
I. Fedorov, I. Safonov
(International Unity Science Institute, Arlington, VA, USA)

PROCESS RELIABILITY OPTIMIZATION

A lot of articles and books were written about business process optimiza-
tion, in particular, process reliability optimization. There are less adequate mod-
els and effective tools. Balance between sufficient trust and forced risk can be
reached only when trust engineering and risk management will be armed by
vendor-independent models and model-independent tools. Motor-car industry,
aircraft and spacecraft industries, shipbuilding, electrical and electronic (!!!) en-
gineering had never even dreamt of the striking situation established in the in-
formation technology – the monopoly of object-oriented methodology and pre-
eminence of dropout creativity over regular knowledge and experience.

Is it possible that automation of information processing reached maturity
before the automation of named above traditional industries? Tell me please, are
you know analogs of the five capability maturity levels for software engineering
or management in these industries? If it were not for unloved by all competitors
and many customers Microsoft, operating systems were standardized following
the same way as some programming languages and design methodologies. Let
us go from one funny extreme to another: How long the statements like this “We
have to constrain the unpredictable nature of technology. That’s why we’ve
eliminated gotos, explicit pointer manipulation and potentially chaotic con-
structs” (Bran Selic cited by Alexandra Weber Morales in the article “Not Just
Model – Model-Driven”, Software Development, September 2005) will surprise
professionals? Why people like Bran Selic in minority? Wake up! XXI century
is out of doors.

The analysis of world experience and our own expertise demonstrated
principal possibility of practical decision of trust engineering and risk manage-
ment problems for information and business technologies to keep to certain con-
ditions. The first of them is necessity of process procedural description and met-
ric specification allowing to account of and manipulate by all parameters, which
are vitally important for customers. In our case, it was found that four canonical
forms of algorithms and programs create all necessary and sufficient conditions
for the model-driven engineering and management of any discrete or discrete-
continuous processes. They are: linear, parallel, disjunctive and cyclic forms.
The second condition is the ontological framework reflecting a goal, structure,
behavior and resources of optimizing process.

For the first time, the methodology prototype was published by V. Karas

and I. Safonov (“Reliability Enhancement of MIS Functioning and Develop-
ment: Optimization of Algorithms”, RDNTP, Kiev, 1974). The most complete
description of this methodology was published in the article “Methodology of
the Structured Algorithmic Systems’ Formal Design for Reliability” (Mechani-
zation and Automation of Control, # 4, 1975) and book “Reliability Design for
Management Algorithms”(IAPU, Vladivostok, 1982) one of the authors.

In this paper we intend to demonstrate how to design programs with opti-
mal reliability for database processing in the Oracle environment. For simplicity
and conciseness, we illustrate the methodology by optimization of a linear ca-
nonical form. Other canonical forms and their arbitrary canonical compositions
are optimized in the similar way. The contemporary approach to Process Design
for Reliability was published in the article “Aspect-Oriented Software Reliabil-
ity Engineering” (Modeling and Analysis of Safety and Risk in Complex Sys-
tems. International Scientific School. – RAS, Saint-Petersburg, 2003).

-- Table A_LPA

CREATE TABLE a_lpa
(
 id NUMBER(5) NOT NULL,
 p NUMBER(3, 2) NOT NULL,
 t NUMBER(10, 2) NOT NULL,
 x NUMBER(5, 2),
 gb NUMBER(5, 4),
 p0_p0 NUMBER(3,2) NOT NULL,
 a NUMBER(5,3)
)
/
 -- Constraints for A_LPA
 ALTER TABLE a_lpa
 ADD CONSTRAINT ala_pk PRIMARY KEY

(id)
/
 ALTER TABLE a_lpa
 ADD CONSTRAINT ala_p0_fk FOREIGN KEY

(p0_p0)
 REFERENCES P0(p0)
/
ALTER TABLE a_lpa
 ADD CHECK ("ID" IS NOT NULL)
/
 ALTER TABLE a_lpa
 ADD CHECK ("P" IS NOT NULL)
/
 ALTER TABLE a_lpa
 ADD CHECK ("T" IS NOT NULL)
/
 ALTER TABLE a_lpa
 ADD CHECK ("P0_P0" IS NOT NULL)
 /
 CREATE TABLE p0
 (
 p0 NUMBER(3,2) NOT NULL,
 m NUMBER(5) DEFAULT 0 NOT NULL,
 px NUMBER(5,4),
 t NUMBER(6,3)
)
 /
 -- Constraints for P0
 ALTER TABLE p0
 ADD CONSTRAINT p0_pk PRIMARY KEY

(p0)
 /
 ALTER TABLE p0
 ADD CHECK ("P0" IS NOT NULL)
 /
 ALTER TABLE p0
 ADD CHECK ("M" IS NOT NULL)
 /
 PACKAGE BODY ALG_OPT IS
 PROCEDURE A_LPA_XM
 (P_M IN P0.M%TYPE
)

IS
A_LPA_J_ROW A_LPA%ROWTYPE;
V_PX0 NUMBER(5, 4);
 V_X A_LPA.X%TYPE;V_P0 P0.P0%TYPE;
 A_LPA_ROW A_LPA%ROWTYPE;
 CURSOR A_LPA_CUR
 IS
select * from a_lpa;
CURSOR A_LPA_J_CUR
 (P_ID IN NUMBER
)
 IS
select * from a_lpa where id<>p_id;
begin
 select p0 into v_p0 from p0 where rownum<2;
 open a_lpa_cur;
 loop
 fetch a_lpa_cur into a_lpa_row;
 exit when a_lpa_cur%notfound;
 v_x:=floor(ln(1-v_p0)/ln(1-a_lpa_row.p));
 update a_lpa set x=v_x where

id=a_lpa_row.id;
 commit;
 end loop;
 close a_lpa_cur;
end;
PROCEDURE A_LPA_MAIN
 IS
V_PX P0.PX%TYPE;
V_P0 P0.P0%TYPE;
V_M P0.M%TYPE;
begin
 update p0 set m=0;
 commit;
 select m,p0 into v_m,v_p0 from p0 where

rownum<2;
 a_lpa_xm(v_m);
 alg_opt.a_lpa_pxm;
 select px into v_px from p0 where rownum<2;
 while v_p0 > v_px loop
 a_lpa_gb(v_m);
 alg_opt.a_lpa_pxm;
 select px into v_px from p0 where rownum<2;
 end loop;
 a_lpa_a;
 a_lpa_t;
end;
PROCEDURE A_LPA_PXM
 IS
V_P0 P0.P0%TYPE;
V_PX P0.PX%TYPE;
V_M P0%ROWTYPE;
A_LPA_ROW A_LPA%ROWTYPE;

CURSOR A_LPA_CUR
 IS
select * from a_lpa;

begin
 v_px:=1;
 open a_lpa_cur;
 loop
 fetch a_lpa_cur into a_lpa_row;
 exit when a_lpa_cur%notfound;
 v_px:=v_px*(1-power((1-

a_lpa_row.p),(a_lpa_row.x+1)));
 end loop;

 close a_lpa_cur;
 update p0 set px=v_px where rownum<2;
 commit;
end;
PROCEDURE A_LPA_GB
 (P_M IN NUMBER
)
 IS
V_MAX_GB_ID A_LPA.ID%TYPE;
A_LPA_J_ROW A_LPA%ROWTYPE;
A_LPA_ROW A_LPA%ROWTYPE;
V_GB NUMBER(5, 4);
CURSOR A_LPA_CUR
 IS
select * from a_lpa;
CURSOR A_LPA_J_CUR
 (P_ID IN NUMBER
)
 IS
select * from a_lpa where id<>p_id;
begin
 open a_lpa_cur;
 loop
 fetch a_lpa_cur into a_lpa_row;
 exit when a_lpa_cur%notfound;
 v_gb:=0;
 open a_lpa_j_cur(a_lpa_row.id);
 loop
 fetch a_lpa_j_cur into a_lpa_j_row;
 exit when a_lpa_j_cur%notfound;
 v_gb:=v_gb+(1-power((1-

a_lpa_j_row.p),(a_lpa_j_row.x+1)));
 end loop;
close a_lpa_j_cur;
v_gb:=v_gb/(a_lpa_row.t*(a_lpa_row.x+1));
 update a_lpa set gb=v_gb where

id=a_lpa_row.id;
 commit;
 end loop;
close a_lpa_cur;
select a1.id into v_max_gb_id from a_lpa a1
where a1.gb = (select max(a2.gb) from a_lpa a2);
 update a_lpa set x=x+1 where id=v_max_gb_id;
 update p0 set m=m+1;
 commit;
end;
PROCEDURE A_LPA_A
A_LPA_ROW A_LPA%ROWTYPE;

CURSOR A_LPA_CUR
IS

select * from a_lpa;
IS
V_A A_LPA.A%TYPE;
begin
 open a_lpa_cur;
 loop
 fetch a_lpa_cur into a_lpa_row;
 exit when a_lpa_cur%notfound;
 v_a:=(1-power((1-

a_lpa_row.p),(a_lpa_row.x+1)))/(1-power((1-
a_lpa_row.p),(a_lpa_row.x)));

 update a_lpa set a=v_a where
id=a_lpa_row.id;

 commit;
 end loop;
 close a_lpa_cur;
end;
PROCEDURE A_LPA_T
 IS
K NUMBER(5, 0);
V_TX A_LPA.T%TYPE;
V_X A_LPA.X%TYPE;
A_LPA_ROW A_LPA%ROWTYPE;
V_T A_LPA.T%TYPE;
CURSOR A_LPA_CUR
 IS
select * from a_lpa;
begin
 v_tx:=0;
 open a_lpa_cur;
 loop
 fetch a_lpa_cur into a_lpa_row;
 exit when a_lpa_cur%notfound;
 --select x into v_x from a_lpa where

id=a_lpa_row.id;
 k:=1;
 v_t:=0;
 for i in 1..a_lpa_row.x
 loop
 v_t:=v_t+(power((1-

a_lpa_row.p),(k)))*k;
 k:=k+1;
 end loop;
v_tx:=v_tx+(a_lpa_row.t*(1+a_lpa_row.p*v_t));
 end loop;
 close a_lpa_cur;
 update p0 set t=v_tx;
 commit;
end;
PROCEDURE A_LPA_INIT
 IS
begin
 update a_lpa set x=null,gb=null,a=null;
 commit;
 update p0 set px=null,t=null,m=0;
 commit;
end;

END ALG_OPT;

