Г.Н. Малашенков, Ю.Н. Анисимов ТЕХНИЧЕСКИЕ РЕШЕНИЯ ПО УМЕНЬШЕНИЮ СИГНАЛА НЕБАЛАНСА В ДИФФЕРЕНЦИАЛЬНОМ ТРАНСФОРМАТОРЕ ТОКА

Для обеспечения пожарной безопасности электроустановок авторами предлагается конструкция дифференциального трансформатора тока (ДТТ), позволяющая определять наличие токов утечки в электроустановках. По величине токов утечки можно оценивать пожарную опасность электрических сетей. В действующих ДТТ на выходе вторичной обмотки имеется сигнал небаланса, который соизмерим с полезным сигналом, возникающим при наличии токов утечки.

Для увеличения чувствительности ДТТ необходимо уменьшить сигнал небаланса, что можно сделать двумя способами.

Первый способ основан на компенсации сигналов небаланса (рис. 1, a, δ). Через два одинаковых тороидальный сердечника с одинаковыми вторичными обмотками, которые сдвинуты относительно друг друга на угол 180° , пропущены одинаково ориентированные фазные проводники, сдвинутые относительно друг друга на 120° .

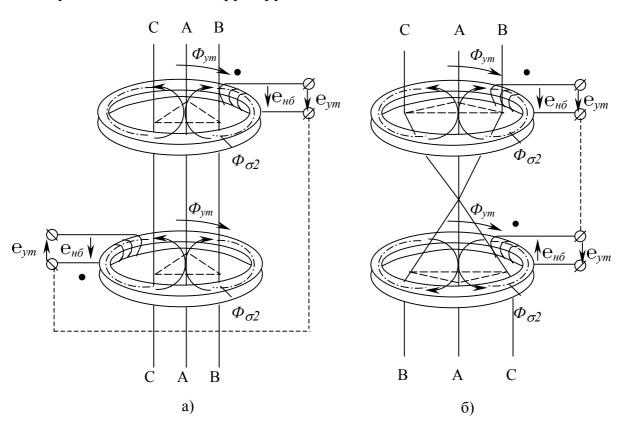


Рис. 1. Схемы компенсации сигнала небаланса

При такой конструкции ДТТ во вторичных обмотках от действия по-

токов рассеяния $\Phi_{\sigma 2}$ (пунктирные линии) наводятся одинаковые по величине, но противоположно направленные сигналы небаланса $e_{n \delta}$. При появлении тока утечки создается пульсирующий поток Φ_{ym} (направление показано стрелкой), который наводит во вторичных обмотках одинаковые по величине и направлению полезные сигналы e_{ym} . Если обмотки такого ДТТ соединить последовательно, то происходит компенсация сигналов небаланса $e_{n \delta}$ и сложение полезных сигналов e_{ym} .

На рис. 1, б компенсация сигналов небаланса $\Theta_{h\delta}$ и сложение полезных сигналов Θ_{ym} , также происходит при последовательном соединении вторичных обмоток. В этом случае через два одинаковых сердечника пропущены фазные проводники, но так, что в нижнем сердечнике они развернуты на 180° по отношению к верхнему сердечнику.

Второй способ (рис. 2) основан на компенсации потоков рассеяния проводниками первичной обмотки.

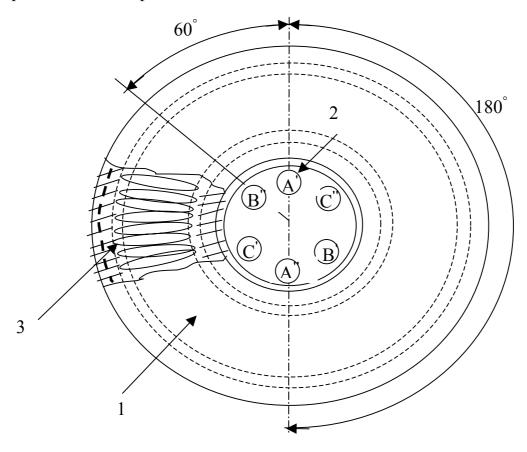


Рис. 2. Конструкция безбалансного ДТТ (1 – тороидальный сердечник; 2 – секция первичной обмотки; 3 – вторичная обмотка)

Указанная цель достигается соответствующим способом включения первичной обмотки, а именно тем, что каждая фаза первичной обмотки

трансформатора выполнена в виде секции, которая состоит из двух одинаковых параллельно соединенных проводников, расположенных диаметрально противоположно в окне сердечника и одинаково прилегающих к виткам вторичной обмотки. Принцип действия предлагаемого трансформатора тока аналогичен принципу действия известных проходных трансформаторов тока. Однако в нем каждая система фазных проводников А', В', С' и А", В", С" создает потоки рассеяния, которые в каждый момент времени векторно противоположны друг другу и взаимокомпенсируются (рис. 1, б), независимо от асимметрий нагрузки и технологических погрешностей в изготовлении трансформаторов.

Экспериментальные исследования показали, что предложенным способом сигнал небаланса можно уменьшить более чем на порядок. Это позволяет, с одной стороны, повысить чувствительность и надежность срабатывания устройств защиты от токов утечек, с другой стороны, упростить эти устройства, сделать многопороговыми и расширить их функциональные возможности. Кроме этого, при одних и тех же габаритах трансформатора тока за счет расщепления фазных проводников можно осуществить защиту более мощных электроприемников, так как увеличивается допустимый ток через секции фазных проводников.

Литература

1. Анисимов Ю.Н. Трансформатор тока нулевой последовательности. Патент на изобретение № 2060568.