В.В. Белозеров (НИИ физики Южного федерального университета; e-mail: firemen@list.ru)

О ПРИМЕНЕНИИ ЗАКОНА БОЛЬШИХ ЧИСЕЛ ПРИ СТАТИСТИЧЕСКОМ АНАЛИЗЕ ПОЖАРОВ

Аннотация. На основе закона больших чисел и статистических данных о пожарах на Юге России с 1995 г. по 2006 г. разработана математическая модель анализа оперативно-тактических задач по тушению пожаров.

Ключевые слова: закон, большие числа, анализ, пожар.

V.V. Belozerov

ON THE APPLICATION OF THE LAW OF LARGE NUMBERS FOR STATISTICAL ANALYSIS OF FIRE

Abstract. Based on the law of large numbers and statistical data on fires in the south of Russia from 1995 to 2006, developed a mathematical model for analyzing operational and tactical tasks in extinguishing fires.

Key words: law, large numbers, analyses, fire.

Сведения об авторе

Белозеров Валерий Владимирович кандидат технических наук, старший научный сотрудник Начальник Испытательного вычислительно-информационного центра НИИ физики Южного федерального университета e-mail: firemen@list.ru

1. Введение

Практика изучения случайных явлений показывает, что хотя результаты отдельных наблюдений, даже проведенных в одинаковых условиях, могут сильно отличаться, в то же время средние результаты для достаточно большого числа наблюдений устойчивы и слабо зависят от результатов отдельных наблюдений. Теоретическим обоснованием этого замечательного свойства случайных событий является закон больших чисел.

Простейшая форма закона больших чисел и исторически первая теорема о них — теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной [1]:

$$\lim_{n\to\infty} P\left(\left|\frac{\mu_n}{n} - p\right| \langle \varepsilon \rangle\right) = 1$$

где μ_n – число успехов в n испытаниях Бернулли, p – вероятность успеха в отдельном испытании, $\varepsilon > 0$ – любое.

В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева. Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа $\varepsilon > 0$:

$$P(|\xi - M_{\xi}| \ge \varepsilon) \le \frac{D_{\xi}}{\varepsilon^2}$$

где M_{ξ} , D_{ξ} — математическое ожидание и дисперсия случайной величины ξ .

Неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия. Однако это утверждение верно и в более общей ситуации, а именно, предположение о существовании дисперсии не является необходимым, т.е. имеет место так называемый закон больших чисел в форме Хинчина [1]:

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{P} a \quad (n \to \infty),$$

где $\xi_1, \ldots \xi_n$ – последовательность независимых одинаково распределенных случайных величин, у которых существует математическое ожидание, равное a.

2. Постановка задачи

Системный анализ оперативно-тактической деятельности (ОТД) противопожарной службы сдерживается [2, 3] отсутствием возможности проведения детального временного анализа решения оперативно-тактических задач (ОТЗ), что обусловлено усечёнными данными в карточках учета пожаров автоматизированной системы обработки данных о пожарах (АСОД ПОЖАРЫ).

Дело в том, что при формировании базы данных АСОД ПОЖАРЫ доступны для анализа четыре "независимых" показателя времён выполнения ОТЗ и два "суммарных" показателя [4]:

- Tс время сообщения о пожаре разность между временем сообщения и временем обнаружения пожара;
- $T_{\rm cn}$ время следования на пожар разность между временем прибытия к месту пожара и временем сообщения о нём;
- $T_{\rm л}$ время локализации пожара разность между временем прибытия к месту пожара и временем его локализации;
- $T_{\text{лик}}$ время ликвидации пожара разность между временем ликвидации пожара и временем его локализации;
- $T_{\text{\tiny T}} = (T_{\text{\tiny Л}} + T_{\text{\tiny ЛИК}})$ разность между временем ликвидации пожара и временем прибытия на него;
- $T_{\rm cr} = (T_{\rm c} + T_{\rm np})$ разность между временем обнаружения пожара и временем прибытия на него.

Общее количество решаемых ОТЗ (рис. 1) – более десяти [5, 6].

Для нахождения корреляции между указанными временами выполнения ОТЗ и социально-экономическими потерями от пожаров было сделано допущение, что все потери от пожара сосредоточены в интервале времени его свободного развития, т.е. с момента возникновения и до локализации пожара (рис. 1). Это допущение обосновывалось следующими очевидными функциональными оперативно-тактическими моделями [5, 6]:

- 1. Если реализован оптимальный оперативный план пожаротушения (организация необходимого числа боевых участков, применение соответствующих пожарной опасности объекта ОТС и подача их с требуемой итенсивностью в течение необходимого времени), то локализация пожара наступает сразу после введения огнетушащего состава (ОТС);
- 2. Если выполнение предыдущих ОТЗ по разведке, спасению населения и боевому развертыванию оптимально, то увеличениие материального ущерба и гибель людей прекращаются при локализации пожара, т.е. ущерб определяется только уже "горящими" ценностями, а развитие пожара (увеличение потерь) прекращается.

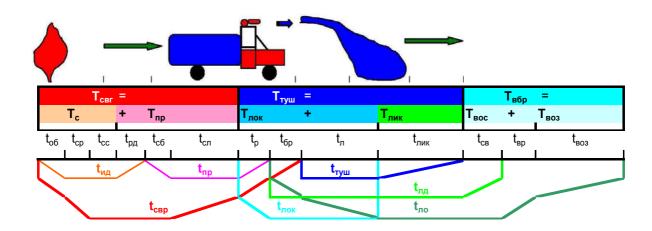


Рис. 1. Псевдографическая структура ОТЗ:

 $t_{\text{ОФП}}$ – время обнаружения опасных факторов пожара (длительность процесса загорания до срабатывания пожарного извещателя ($t_{\text{об}}$) и включения оповещения ($t_{\text{ср}}$), или обнаружения дыма/огня населением и т.д.);

 $t_{\rm CC}$ — время сообщения о пожаре (длительность процесса сообщения о пожаре в ПЧ средствами связи и сигнализации, посыльным и т.д.);

 $t_{\rm PД}$ — время решения оперативной задачи диспетчером (длительность процесса идентификации объекта пожара, определения высылаемых сил и средств по расписанию выездов, формирования и передача приказа на выезд в Π Ч);

 $t_{\rm CE}$ — время сбора и высылки боевого расчёта по тревоге (длительность процесса сбора боевых расчетов и выезда пожарных автомобилей);

 $t_{\rm CЛ}$ – время следования к месту пожара (длительность процесса движения пожарных автомобилей к объекту пожара);

 $t_{\rm P}$ — время разведки (длительность процесса обнаружения очага пожара и пострадавших);

 $t_{\rm БP}$ — время боевого развертывания (длительность процесса спасения пострадавших, организации боевых участков, постановки на водоисточники и развертывания пожарно-технического вооружения);

 $t_{\rm Л}$ — время локализации пожара (длительность процесса ограничения распространения огня огнетушащими составами, включая защиту окружающих помещений и объектов);

 $t_{\text{ЛИК}}$ — время ликвидации пожара (длительность процесса подавления горения и обработки места пожара на предмет недопущения повторного воспламенения);

 $t_{\rm CB}$ — время свертывания (длительность процесса свертывания пожарнотехнического вооружения);

 $t_{\rm BP}$ — время восстановления ресурсов (длительность процесса восстановления огнетушащих составов в пожарных автомобилях);

 $t_{\rm BO3}$ — время возвращения с места пожара (длительность процесса движения пожарных автомобилей к ПЧ и постановка их в боевой расчет).

3. Способы и результаты решения

Используя принцип "черного ящика", и, подавая на вход АСОД "ПОЖАРЫ" скоррелированные условия выборки (пожары, ущерб, гибель и т.д.) по временам выполнения ОТЗ, представленным в геометрической прогрессии, были получены данные и построены гистограммы (рис. 2) времён выполнения ОТЗ на Юге России в 1995-2006 гг. (Ростовская область, Краснодарский и Ставропольский края). При этом данные о пожарах с "нулевыми" временами и с временами более 1533 минут были "собраны и вынесены на бесконечность" и учитывались при расчетах как пожары, на которые ПЧ не привлекались.

Обработка приведенных ниже гистограмм на ЭВМ по методу выравнивания средних показала, что все огибающие, имеющие экстремумы, с достаточной точностью описываются трансцендентными функциями вида:

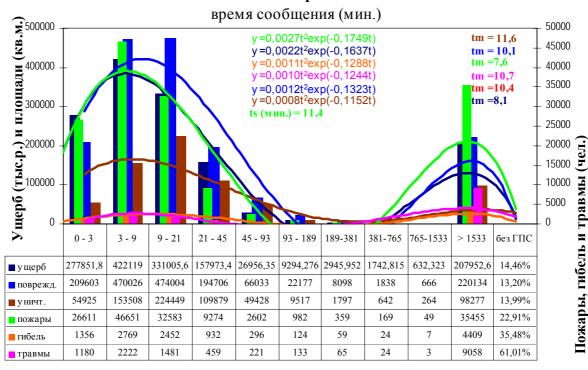
$$y = a t^b \cdot \exp(-c t), \tag{1}$$

где b/c — максимум функции, $(b+\sqrt{b})/c$ — "правая" точка перегиба, $(b-\sqrt{b})/c$ — "левая" точка перегиба, которые при интегрировании дают гамма-распределения (распределения Эрланга) пожаров, ущерба, гибели, площадей и т.д. по временам выполнения ОТЗ:

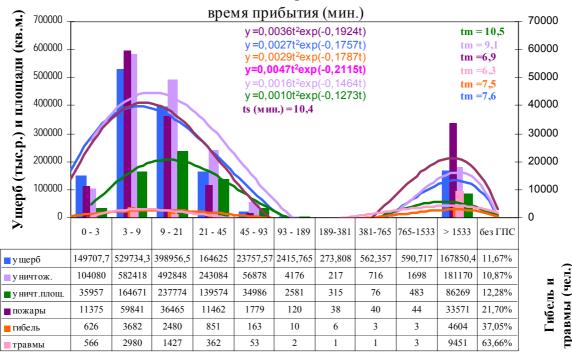
$$y = \frac{\left(\frac{t}{c}\right)^{b-1} \cdot \exp\left(-\frac{t}{c}\right)}{c \cdot [(b-1)!]},$$
(2)

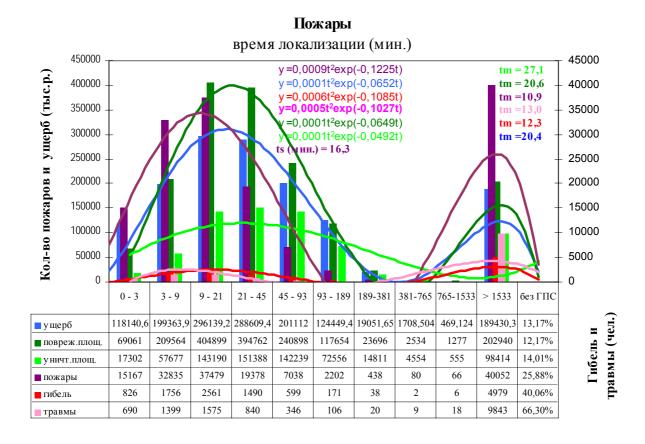
$$P = 1 - \exp\left(-\frac{t}{c}\right) \cdot \left[\sum_{i=0}^{b-1} \frac{(t/c)^i}{i!}\right]. \tag{3}$$

Пожары



Пожары





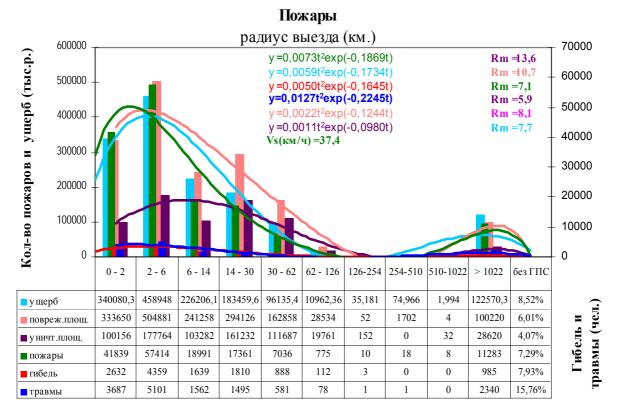


Рис. 2. Гистограммы времён выполнения ОТЗ

На основании указанной выше теоремы Хинчина (на массиве данных по 154735 пожарам) была найдена взаимосвязь математических ожиданий всех "новых времён" ОТЗ с математическими ожиданиями времён, фиксируемых в карточках учета пожаров: T_C , $T_{\Pi P}$, $T_{ЛОК}$, $T_{ЛИК}$ ($T_{TУШ}$, $T_{CB\Gamma}$), для чего была составлена система уравнений (4), описывающая их взаимосвязи, для решения которой были использованы ещё три показателя карточки учета пожаров и нормативы сбора боевых расчетов на ΠA разных типов [4, 6, 7]:

R — расстояние до объекта пожара, по которому определяется средняя скорость следования пожарного автомобиля $V_C = \frac{60 \cdot R_C}{(T_{IIP} - t_{co} - t_{no})};$

 S_{y} , S_{Π} — уничтоженные и поврежденные пожаром площади, существенно "удлиняющие" расстояние до очага пожара на крупных и рассредоточенных промышленных и сельскохозяйственных объектах;

 T_{CE} — норматив времени сбора и выезда по тревоге отделения и караула (на ПА разных типов - ЗИЛ, ГАЗ, КАМАЗ), как средняя величина их "отличных оценок" (T_{CE} - (30 + 34 + 90 + 94)/4 = 1,033).

$$\begin{cases} t_{u\partial} = T_C + t_{p\partial} \\ t_{np} = T_C + T_{\Pi P} + t_p - t_{u\partial} \\ t_{c\delta} = T_{\Pi P} - t_{c\Lambda} - t_{p\partial} \\ t_{c\eta} = T_C + T_{\Pi P} - t_{u\partial} - t_{c\delta} \\ t_p = t_{np} - T_{\Pi P} + t_{p\partial} \\ t_{c\theta p} = T_C + T_{\Pi P} + t_p + t_{\delta p} . \end{cases}$$

$$t_{\delta p} = T_{\Lambda OK} - t_{\Lambda} - t_{p}$$

$$t_{myu} = T_{\Lambda UK} + t_{\Lambda}$$

$$t_{\Lambda} = T_{\Lambda UK} - t_p - t_{\delta p}$$

$$t_{\pi UK} = T_{\pi UK} - t_{\rho} - t_{\delta p}$$

При этом, в связи с разной "скоростью автоматизации" работ диспетчеров ЦУСС в городах и ПЧ в сельских районных центрах (оснащения АРМ и т.д.), влияющих на время привлечения сил и средств, использовано предельно возможное сокращение времени решения диспетчером задачи за время сбора по тревоге [6], т.е. $T_{CB} = (t_{p0} + t_{c0} = t_{c0})$. Тогда минимальное время следования боевого расчета на пожар определится по формуле:

$$T_{CJI} = \frac{\left(R_C + \frac{\sqrt{S_V} + \sqrt{S_{II}}}{1000}\right) \cdot \left(T_{IIP} - T_{CE}\right)}{R_C}.$$
 (5)

Таким образом, система (4) может быть решена методом подстановки с соответствующими заменами переменных, в связи с чем для определения "новых времён" начальной стадии пожара выберем из неё 1-ю систему из 2-х уравнений:

$$\begin{cases} t_{np} = T_{\Pi P} + t_p - t_{p\partial} \\ t_{np} = t_{c\delta} + t_{cn} + t_p \end{cases}$$
 (6)

Разделим все уравнения на t_{cn} , введём новую переменную $\frac{t_{p\partial}+t_{c\partial}}{t_{cn}}=k=\frac{T_{\Pi P}-t_{cn}}{t_{cn}}$ и, учитывая, что $t_{p\partial}=kt_{cn}-t_{c\partial}$, преобразуем систему (6) следующим образом:

$$\begin{cases}
\frac{t_{np}k}{T_{\Pi P} - t_{cn}} = \frac{T_{\Pi P}k}{T_{\Pi P} - t_{cn}} + \frac{t_{p}k}{T_{\Pi P} - t_{cn}} - \frac{k^{2}t_{cn}}{T_{\Pi P} - t_{cn}} + \frac{kt_{c6}}{T_{\Pi P} - t_{cn}} \\
\frac{t_{np}k}{T_{\Pi P} - t_{cn}} = \frac{t_{c6}k}{T_{\Pi P} - t_{cn}} + 1 + \frac{t_{p}k}{T_{\Pi P} - t_{cn}}
\end{cases} (7)$$

Подставим правую часть 2-го уравнения вместо левой части 1-го уравнения и, приводя подобные, получим квадратное уравнение,

$$k^{2} - \frac{T_{\Pi P}}{t_{CR}}k + \frac{T_{\Pi P} - t_{CR}}{t_{CR}} = 0,$$
 (8)

корни которого вычисляются по формуле:

$$k = \frac{T_{\Pi P}}{2t_{cn}} \pm \sqrt{\left(\frac{T_{\Pi P}}{2t_{cn}}\right)^{2} - \frac{T_{\Pi P} - t_{cn}}{t_{cn}}} = \frac{T_{\Pi P}}{2t_{cn}} \pm \sqrt{\frac{T_{\Pi P}^{2} - 4T_{\Pi P}t_{cn} + 4t_{cn}^{2}}{4t_{cn}^{2}}} = \frac{T_{\Pi P} \pm \sqrt{T_{\Pi P}^{2} - 4T_{\Pi P}t_{cn} + 4t_{cn}^{2}}}{2t_{cn}} = \frac{T_{\Pi P} \pm \sqrt{T_{\Pi P}^{2} - 4T_{\Pi P}t_{cn} + 4t_{cn}^{2}}}{2t_{cn}}.$$
(9)

Подставляя в формулу (9) вместо t_{cn} минимальное время следования T_{CD} из уравнения (5) и учитывая, что время следования — t_{cn} , как правило, больше суммы времён сбора и решения диспетчером задачи $t_{po} + t_{co} = kt_{cn}$, т.е. k лежит в интервале 0,1 < k < 1 и второй корень уравнения (с вычитанием корня из дискриминанта) не имеет смысла, получим следующие формулы для вычисления k и математического ожидания времени следования к месту пожара:

$$k = \frac{R_{C}T_{\Pi P} + R_{C}}{T_{\Pi P}^{2} - 4T_{\Pi P}} \underbrace{\frac{\left(R_{C} + \frac{\sqrt{S_{V}} + \sqrt{S_{\Pi}}}{1000}\right) \cdot \left(T_{\Pi P} - T_{CE}\right)}{R_{C}}}_{R_{C}} + 4\underbrace{\left(\frac{\left(R_{C} + \frac{\sqrt{S_{V}} + \sqrt{S_{\Pi}}}{1000}\right) \cdot \left(T_{\Pi P} - T_{CE}\right)}{R_{C}}\right)^{2}}_{R_{C}};$$

$$2\left(R_{C} + \frac{\sqrt{S_{V}} + \sqrt{S_{\Pi}}}{1000}\right) \cdot \left(T_{\Pi P} - T_{CE}\right)$$
(10)

$$t_{cn} = \frac{T_{\Pi P}}{k+1}. (11)$$

Разделив все уравнения системы (6) на $t_{p\partial}$ и проведя аналогичные (7) преобразования с заменой переменных $\frac{t_{c\delta}+t_{c\pi}}{t_{p\partial}}=\ell=\frac{T_{\Pi P}-t_{p\partial}}{t_{p\partial}},$ получим уравнение

$$\ell^2 - \frac{T_{\Pi P}}{t_{p\partial}} \ell + \frac{T_{\Pi P} - t_{p\partial}}{t_{p\partial}} = 0, \qquad (12)$$

корни которого вычисляются по аналогичной формуле:

$$\ell = \frac{T_{\Pi P}}{2t_{p\partial}} \pm \sqrt{\left(\frac{T_{\Pi P}}{2t_{p\partial}}\right)^2 - \frac{T_{\Pi P} - t_{p\partial}}{t_{p\partial}}} = \frac{T_{\Pi P} \pm \sqrt{T_{\Pi P}^2 - 4T_{\Pi P}t_{p\partial} + 4t_{p\partial}^2}}{2t_{p\partial}}, \quad (13)$$

но вместо $t_{p\partial}$ подставляется его граничное выражение $t_{p\partial} = t_{c\pi} - T_{CE}$, в котором, в отличие от аналогичного уравнения (9), подставляется математическое ожидание времени следования из уравнения (11), в результате чего получаем следующие формулы для вычисления ℓ и математических ожи-

даний времён решения диспетчером задачи $(t_{p\partial})$, сбора по тревоге $(t_{c\delta})$ и идентификации объекта пожара $(t_{u\partial})$:

$$\ell = \frac{T_{\Pi P} + \sqrt{T_{\Pi P}^2 - 4T_{\Pi P} \left(\frac{T_{\Pi P}}{k+1} - T_{CE}\right) + 4\left(\frac{T_{\Pi P}}{k+1} - T_{CE}\right)^2}}{2\left(\frac{T_{\Pi P}}{k+1} - T_{CE}\right)};$$
(14)

$$t_{p\partial} = \frac{T_{\Pi P}}{\ell + 1};\tag{15}$$

$$t_{c6} = T_{IIP} \left(1 - \frac{1}{\ell + 1} - \frac{1}{k + 1} \right); \tag{16}$$

$$t_{u\partial} = T_C + \frac{T_{\Pi P}}{\ell + 1}. (17)$$

Для определения "новых времён" заключительной стадии пожара составим 2-ю систему из 2-х уравнений:

$$\begin{cases}
 t_{cep} = T_C + T_{\Pi P} + t_p + t_{\delta p} \\
 t_{cep} = T_C + T_{\Pi P} + T_{\Pi O K} - t_{\pi}
\end{cases}$$
(18)

Разделив все уравнения системы (18) на t_n , и проведя аналогичные (7) преобразования с заменой переменных $\frac{t_p + t_{\delta p}}{t_n} = m = \frac{T_{JOK} - t_n}{t_n}$, получим уравнение,

$$m^{2} - m \frac{T_{JOK}}{t_{\pi}} + \frac{T_{JOK} - t_{\pi}}{t_{\pi}} = 0.$$
 (19)

корни которого вычисляются по формуле:

$$m = \frac{T_{JOK}}{2t_{_{II}}} \pm \sqrt{\left(\frac{T_{JOK}}{2t_{_{II}}}\right)^{2} - \frac{T_{JOK} - t_{_{II}}}{t_{_{II}}}} = \frac{T_{JOK} \pm \sqrt{\left(T_{JOK} - 2t_{_{II}}\right)^{2}}}{2t_{_{II}}}.$$
 (20)

Один из корней, учитывая принятые выше допущения при $t_n \to 0$, не определён, а второй равен единице:

$$m = \frac{T_{JOK} - T_{JOK} + 2t_{_{II}}}{2t_{_{II}}} = 1$$
, откуда $t_{_{II}} = \frac{T_{JOK}}{m+1} = \frac{T_{JOK}}{2}$. (21)

Тогда имеем следующие формулы для вычисления математических ожиданий времён тушения (t_{myw}) и свободного развития пожара (t_{csp}) , а также суммы времён разведки (t_p) и боевого развертывания $(t_{\delta p})$:

$$t_{myu} = T_{JUK} + t_{\pi} = T_{JUK} + \frac{T_{JOK}}{2};$$
 (22)

$$t_{cep} = T_C + T_{\Pi P} + T_{JOK} - t_{\pi} = T_C + T_{\Pi P} + \frac{T_{JOK}}{2};$$
 (23)

$$t_p + t_{\delta p} = \frac{T_{\mathcal{N}OK}}{2}. (24)$$

Для решения уравнения (24), разделим все его члены на $t_{\delta p}$ и введем новую переменную $\frac{t_p}{t_{\delta p}}=q$, в результате чего получим

$$\frac{t_p}{t_{\delta p}} + 1 = \frac{T_{JOK}}{2t_{\delta p}} \to t_{\delta p} = \frac{T_{JOK}}{2(q+1)}.$$
 (25)

Для нахождения q воспользуемся нормативами по боевому развертыванию от пожарного автомобиля (с постановкой на водоисточник и прокладкой двух линий: учебная башня и мишень) $T_{\mathit{BP}}-3,4$ мин. [7, 8], который подставим в уравнение (25):

$$q = \frac{T_{JOK}}{6.8} - 1. {(26)}$$

Тогда математические ожидания времён разведки (t_p) и прибытия (t_{np}) определятся по формулам:

$$t_p = \frac{T_{JOK}}{2} - \frac{T_{JOK}}{2(q+1)} = \frac{T_{JOK}q}{2(q+1)}.$$
 (27)

$$t_{np} = T_{\Pi P} + t_p - t_{p\partial} = T_{\Pi P} + \frac{T_{\Pi O K} q}{2 \cdot (q+1)} - \frac{T_{\Pi P}}{\ell+1} = \frac{T_{\Pi P} \ell}{\ell+1} + \frac{T_{\Pi O K} q}{2 \cdot (q+1)}. \quad (28)$$

Учитывая свойство аддитивности функций распределений Эрланга, можно более точно, чем получено ранее [3, 5, 6, 9], определить "суммарные времена", состоящие из нескольких "новых времён" выполнения ОТЗ, описываемых функциями распределения Эрланга (2, 3) нулевого порядка $(t_i \rightarrow t_{p\partial}, t_{co}, t_{co}, t_{p}, t_{\delta p}, t_{\pi}, t_{\pi u \kappa} = T_{\pi u \kappa})$:

$$b = 1$$
, $c = t_i$, $P = 1 - \exp(-t/t_i)$. (29)

В этом случае функции вероятности распределений Эрланга "суммарных новых времён" определятся следующим образом:

идентификация — распределение Эрланга 1-го порядка ($t_{u\partial} = T_C + t_{p\partial}$):

$$b = 2$$
, $c = t_{u\partial}/2$, $P = 1 - (1 + 2t/t_{u\partial}) \cdot \exp(-2t/t_{u\partial})$; (30)

прибытие – распределение Эрланга 2-го порядка $(t_{np} = t_{co} + t_{cn} + t_p)$:

$$b = 3$$
, $c = t_{np}/3$, $P = 1 - [1 + 3t/t_{np} + 9t^2/2t_{np}^2) \cdot \exp(-3t/t_{np})$; (31)

тушение – распределение Эрланга 2-го порядка $(t_{mvu} = T_{ЛИК} + t_{\pi})$:

$$b = 3$$
, $c = t_{mvu}/3$, $P = 1 - [1 + 3t/t_{mvu} + 9t^2/2t_{mvu}^2) \cdot \exp(-3t/t_{mvu})$; (32)

свободное развитие - распределение Эрланга 5-го порядка ($t_{cep} = t_{uo} + t_{np} + t_{op}$):

$$b = 6, c = t_{cep}/6, P = 1 - (1 + 6t/t_{cep} + 18t^2/t_{cep}^2 + 36t^3/t_{cep}^3 + 54t^4/t_{cep}^4 + 194t^5/3t_{cep}^5) \cdot \exp(-6t/t_{cep}).$$
(33)

Полученные формулы апробированы при статистическом анализе пожаров с помощью АСОД "ПОЖАРЫ" в Ростовской области, в Краснодарском и Ставропольском краях [5, 6, 10].

С примером реализации предлагаемого подхода на суммарной статистике пожаров на Юге России (1995-2006 гг.) можно ознакомиться, обратившись к автору настоящей статьи по электронной почте: firemen@list.ru.

Литература

- 1. **Энциклопедия** кибернетики // Под ред. акад. Глушкова В.М., т.1. Киев: АН УССР, 1974. С.171, 179.
- 2. **Гаврилей В.М., Ширяев В.Н.** Оптимизация деления территории города на районы выезда пожарных частей // Сб. науч. тр. "Экономика в пожарной охране". М.: ВНИИПО, 1978. С. 31-34.

- 3. **Кабанец Е.Е.** Классификация пожаров для оценки и прогнозирования оперативной обстановки // Сб. науч. тр. "Организационно-управленческие проблемы пожарной охраны". М.: ВНИИПО, 1986. С. 47-52.
- 4. **Статистика** пожаров. Руководство пользователя версия 05.10.95. М.: ВНИИПО, 1995. 50 с.
- 5. **Белозеров В.В., Бойко С.И.** Моделирование оперативно-тактической деятельности гарнизонов пожарной охраны // Материалы 9-й науч.-техн. конф. "Системы безопасности" СБ-2000. М.: Академия ГПС МВД России, 2000. С. 135-138.
- 6. **Белозеров В.В., Глушко А.А., Кононенко Р.А.** Дифференциальная модель решения оперативно-тактических задач противопожарной службы // Материалы 13-й науч.-техн. конф. "Системы безопасности" СБ-2004. М.: Академия ГПС МЧС России, 2004. С. 285-288.
- 7. **Теребнев В.В., Грачев В.А., Подгрушный А.В., Теребнев А.В.** Пожарностроевая подготовка: уч. пособ. М.: Академия ГПС МЧС России, Колан-Форт, 2004. 336 с.
- 8. **Нормативы** по пожарно-строевой подготовке / Утверждены ГУГПС МВД России 28.12.94 № 20/3.1/2188. М.: МВД России, 1994. 35 с.
- 9. **Брушлинский Н.Н.** Моделирование оперативной деятельности пожарной службы. М.: Стройиздат, 1981. 96 с.
- 10. **Белозеров В.В.** Информационные технологии и компьютерное моделирование в задачах безопасности жизнедеятельности // Материалы науч.-метод. конф. "Современные информационные технологии в образовании ЮФО" СИТО-2009. Ростов н/Д: ЮГИНФО, 2009. С. 42-47.