Д.С. Серебренников¹, К.Ю. Литвинцев² (¹Институт инженерной физики и радиоэлектроники СФУ, ²ООО "Торинс"; e-mail: dr.rossingol@mail.ru)

ОБЗОР МОДЕЛЕЙ РАСПРОСТРАНЕНИЯ ДЫМА И ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ВИДИМОСТИ

Проведён краткий обзор различных подходов к расчётам параметров движения дыма и дальности видимости при пожаре в помещении.

Ключевые слова: вычислительная гидродинамика, модель дыма, видимость, дымообразование.

D.S. Serebrennikov, K.Yu. Litvintsev OVERVIEW OF SMOKE PROPAGATION MODELS AND MODELING SMOKE VISIBILITY

This study gives a brief review of different approaches to evaluation of smoke movement and visibility in the building fire.

Key words: computational fluid dynamics, smoke model, visibility, smoke production.

Статья поступила в редакцию Интернет-журнала 20 ноября 2010 г.

1. Введение

Современной тенденцией в проектировании пожаробезопасных объектов является внедрение методов оценки риска и возможных последствий пожара в конкретных условиях с максимальным учетом специфики объекта. Такое "гибкое" проектирование предполагает использование компьютерного моделирования, в отличие от традиционного подхода, который полагается на систему "жестких" требований существующих стандартов.

Так в ряде отечественных норм уже реализуются элементы гибкого нормирования, например в ГОСТ 12.1.004-91.

В связи с этим особое значение приобретают вопросы верификации математических моделей и обоснованности их применения для оценки динамики пожара и работы систем противопожарной защиты конкретных объектов. В настоящее время в России принято оценивать пожарную опасность по распространению опасных факторов пожара (ОФП). Опасными факторами пожара, воздействующими на людей и материальные ценности, являются: пламя и искры; повышенная температура окружающей среды; токсичные продукты горения и термического разложения; дым; пониженная концентрация кислорода.

Критическая продолжительность пожара для людей определяется из условия достижения одним из ОФП своего предельно допустимого значения. В качестве критерия опасности для людей рассматривается условие достижения одним из ОФП предельно допустимого значения.

Первым возникающим ОФП является критическая продолжительность пожара по потери видимости, которая и определяет время блокирования эвакуационных выходов. Дым, являющийся следствием любого возгорания, уменьшает видимость, а это, в свою очередь, препятствует эвакуации. Видимость зависит от концентрации (оптической плотности) дыма и таких факторов, как уровень контраста с фоном и человеческое восприятие.

Ниже представлены основные методы решения задачи распространения дыма и определения дальности видимости.

2. Расчёт поля видимости в рамках интегральной модели [1]

Интегральная модель является самой простой из математических моделей для моделирования развития пожара, основанная на балансовых соотношениях. Для расчёта параметров распространения продуктов горения по зданию составляются и решаются уравнения аэрации, тепло- и массообмена. В систему уравнений входит уравнение баланса оптической плотности дыма, которое имеет вид:

$$V_j \,\mathrm{d}\mu_j / \mathrm{d}t = \psi D_m + \sum_i \mu_i G_i - \mu_j \sum_k G_k,$$

где μ_i, μ_j – оптическая плотность дыма в *i*-м и *j*-м помещениях, Hn/m; V_j – объём помещения, m^3 ;

 D_m – дымообразующая способность пожарной нагрузки, $Hn \cdot M^2 / \kappa c$;

 G_k – расход газов, входящих в помещение, $\kappa c/c$;

 G_i – расход газов, выходящих из помещения, $\kappa c/c$;

ψ − скорость выгорания пожарной нагрузки, *кг/с*.

Оптическая плотность дыма при обычных условиях связана с расстоянием предельной видимости в дыму l_{np} соотношением:

$$l_{np} = 2,38/\mu$$

Границы применения модели (по объёмам и геометрии помещений, расположению горючего материала и т.д.) точно не изучены, и величины ОФП на уровне рабочей зоны не зависят от вида, свойств, места расположения горючего материала и геометрии помещения.

3. Определение параметра оптической плотности через подобие полю концентрации CO₂

Данный подход используется в полевых моделях для оценки динамики развития опасных факторов пожара.

При этом поле концентрации частиц сажи не рассчитывается, а поле оптической плотности дыма принимается пропорциональным полю концентрации CO₂:

$$\mu = k \cdot n_{\rm CO_2},$$

где *k* – коэффициент подобия, зависит от типа пожарной нагрузки; n_{CO²} – концентрация углекислого газа.

4. Определение дальности видимости через поле концентрации дыма

Модель движения дымовых частиц

Наиболее адекватный подход для определения поля видимости – через поле концентрации дымовых частиц. Фактически существуют два основных подхода по моделированию движения частиц: Лагранжа и Эйлера. Ниже представлены краткие описания моделей движения дисперсной фазы по методу Лагранжа и диффузионно-инерционному методу (на основе метода Эйлера).

Модель движения дисперсной фазы по методу Лагранжа

При моделировании движения частиц учитываются основные силы, воздействующие на частицу: межфазного взаимодействия (аэродинамического сопротивления) и тяжести.

Уравнение движения частицы:

$$\frac{\mathrm{d}U_{ip}}{\mathrm{d}t} = C_w A_p \frac{\rho}{2} U_r (U_i - U_{ip}) - \rho g_i,$$

где $C_w = \frac{24}{2} f_k;$

$$Re_{p}$$

$$f_{k} = \left(1 + \frac{\sqrt{Re}}{6} \left(1 + \frac{\sqrt{Re}}{10}\right)\right);$$

$$Re_{p} = \frac{U_{r}d_{p}\rho}{\xi};$$

$$U_{r} = \left(\sum_{i=1}^{3} (U_{i} - U_{ip})^{2}\right)^{1/2};$$

 d_p - диаметр частицы;

 ρ - плотность газа;

 ξ - молекулярная вязкость;

U_i - *i*-ая компонента скорости газа;

*U*_{*ip*} - *i*-ая компонента скорости частицы.

Турбулентные структуры газа обуславливают стохастическое турбулентное движение частиц по траекториям. В макроскопическом плане это приводит к диффузии по типу броуновского движения молекул. При этом для анализа влияния турбулентности газа на макроскопические характеристики двухфазного потока необходимо проводить статистическое осреднение по большому числу частиц, стартующих с одного места.

Диффузионно-инерционная модель

Диффузионно-инерционный метод (подход Эйлера) позволяет корректно учитывать диффузию и осаждение частиц дыма и существенно сократить время счёта, по сравнению с лагранжевым подходом, за счёт меньшего количества уравнений, описывающих процесс. Основные соотношения модели.

Плотность смеси несущей фазы и дисперсного потока выражается через массовые доли отдельных компонент потока следующим образом:

$$\rho = \left(\sum_{i} \frac{f_i}{\rho_i}\right)^{-1},$$

где суммирование ведется по всем компонентам среды.

Объёмная доля *i*-го компонента связанна с его массовой долей соотношением:

$$\alpha_i = \frac{\rho f_i}{\rho_i}.$$

Уравнение неразрывности смеси:

$$\frac{\partial \rho}{\partial t} + \nabla (\rho v) = 0.$$

Уравнения баланса количества движения смеси:

$$\frac{\partial \rho v}{\partial t} + \nabla (\rho v \cdot v) = -\nabla p + \nabla (\tau^m + \tau^t) + (\rho - \rho_\infty) g - \nabla (\rho f_D u^r \cdot u^r),$$

где τ^m - тензор вязких напряжений;

 τ^{t} - тензор Рейнольдсовых напряжений;

g - гравитационная сила на единицу массы;

р – давление.

Уравнения переноса компонентов основной фазы:

$$\frac{\partial \rho f_i}{\partial t} + \nabla \left(\rho v \cdot f_i \right) = \nabla \left(\left(D_i + \frac{\mu_t}{Sc_i} \right) \cdot \nabla f_i \right) + \dot{m}_i,$$

где *D* – коэффициент молекулярной диффузии;

Sc – турбулентное число Шмидта;

m – источниковый член.

Основное ограничение в использовании модели – размер частиц примерно до ~ 50 *мкм* (рис. 1). Подавляющая доля частиц сажи меньше 50 *мкм*.

а) частица сгоревшего полиуретана (тление)

б) частица сгоревшей резины (тление)

Рис. 1. Характерный размер дымовых частиц

Определение потери видимости

Когда определено поле концентрации дымовых частиц, можно определить поле видимости. Существуют два основных подхода для его определения: лучевой и подобия. Лучевым подходом рассчитывается ослабление интенсивности света вдоль заданного направления, но из-за его сложностей применяется, как правило, второй подход, когда поле видимости принимается обратно пропорциональным полю концентрации дыма.

Определение потери видимости на основе лучевого подхода [2]

Коэффициент ослабления света α можно выразить через оптическую плотность массы δ_m и через массовый коэффициент ослабления α_m :

$$\alpha = 2,303 \cdot \delta_m \cdot m_f$$
 и $\alpha = \alpha_m \cdot m_S$.

При заданном типе топлива можно использовать любое из этих уравнений в зависимости от того, какие данные имеются в наличии: α_m или δ_m . Взаимосвязь величин α_m и δ_m можно представить в следующем виде:

$$\delta_m = \alpha_m \cdot Y_S / 2,303.$$

Следует отметить, что уровень задымляемости Y_s (из расчёта *кг* дымовых частиц / *кг* топлива) определяется по формуле $Y_s = m_S/m_f$.

Коэффициент ослабления света является функцией длины световой волны. Исследования также показали, что при определённой длине волны, к примеру, $\lambda = 633 \ nm$, дым от пламени при большом обмене воздуха имеет практически универсальный удельный коэффициент ослабления $\alpha_m = 8,7 \pm 1,1 \ m^2/2$. Величина α_m в силу дымообразования является практически универсальной константой. Ввиду того, что сажа, в первую очередь, состоит из сферических углеродных частиц гораздо меньшего размера, чем длина световой волны, площадь ослабления света на единицу массы соответствует поглощению света [3]. Коэффициент ослабления света может быть вычислен при условии получения данных по передвижению частиц сажи из CFD-моделей.

Условия видимости определяются на основе решения уравнения переноса дымовых частиц и эмпирической связи концентрации частиц дыма и оптической плотности дыма.

Определение потери видимости по полю концентрации дымовых частиц

Источник дымовых частиц в уравнении определяется по данным величины удельного дымообразования:

$$\dot{m}_D = 2,303 \cdot \frac{D_m \Psi}{\Delta V \alpha_m},$$

где α_m – удельный коэффициент поглощения, $M^2/\kappa r$;

 Ψ – скорость выгорания топлива, $\kappa c/c$;

 D_m - удельное дымообразование, $M^2/\kappa r$.

Далее рассчитывается оптическая плотность дыма через удельную массу частиц дыма f_D , удельный коэффициент поглощения α_m и плотность газа ρ :

$$\mu = \frac{f_D \alpha_m \rho}{2,303}$$

В свою очередь, поле величины предельной видимости рассчитывается через оптическую плотность дыма:

$$l_{np} = 2,38/\mu$$
.

Вывод

Представленные модели широко используются в различных вычислительных программах для расчёта опасных факторов пожара (FDS, SmartFire, SigmaFire и т.д.). У каждой из них есть свои достоинства и недостатки. Выбор конкретной модели зависит от возможностей и целей задачи. Но сейчас все большее распространение получают математические методы, основанные на полевом подходе, как более точные и универсальные. Эти методы органично вписываются в концепцию "гибкого" нормирования.

Литература

1. ГОСТ 12.1.004-91. Пожарная безопасность. Общие требования.

2. *Guan H.Y., Kwok K.Y.* Computational Fluid Dynamics in Fire Engineering. Theory, Modeling and Practice, Butterworth-Heinemann, Elsevier Science and Technology, ISBN: 978-0-7506-8589-4 (2009). 530 p.

3. *Kang K.* A smoke model and its application for smoke management in an underground mass transit stations. Fire Safety Journal 42, 2007. P. 218–231.