С.В. Степанова, В.В. Доможиров, И.Г. Шайхиев, И.Ш. Абдуллин

(Казанский национальный исследовательский технологический университет; e-mail: ssvkan@yandex.ru)

ОБ ИЗМЕНЕНИЯХ СОРБЦИОННЫХ СВОЙСТВ ПЛОДОВЫХ ОБОЛОЧЕК ОВСА ПРИ ИХ ПЛАЗМЕННОЙ ОБРАБОТКЕ

Исследовано удаление нефти с водной поверхности с использованием плодовых оболочек овса, обработанных высокочастотной плазмой пониженного давления. Найдены оптимальные параметры плазменной обработки.

Ключевые слова: нефть, сорбция, плодовые оболочки овса, плазма.

S.V. Stepanova, V.V. Domozhirov, I.G. Shaikhiev, I.Sh. Abdullin ABOUT CHANGES OF THE SORPTION PROPERTIES OF FRUIT SHELLS OF OATS IN THEIR PLASMA PROCESSING

Oil removal from a water surface with use of fruit covers of the oats processed by high-frequency plasma of lowered pressure is investigated. Optimum parameters of plasma processing are found.

Key words: oil, sorption, fruit covers of oats, plasma.

Среди многочисленных вредных веществ, попадающих в окружающую среду, *нефтепродукты* (*НП*) занимают одно из первых мест. Работа автотранспорта и предприятий нефтеперерабатывающей и нефтехимической промышленности, газообразные выбросы и сточные воды промышленных предприятий, многочисленные разливы нефти и НП в результате аварий трубопроводов и нефтеналивных судов (танкеров), аварий и пожаров на нефтехранилищах и нефтеперегонных заводах приводят к загрязнению воздуха, воды и почвы значительными количествами сырой нефти и продуктов её переработки и создают серьёзную угрозу экологии регионов России.

Попадание нефти и её компонентов в окружающую среду вызывает изменение физических, химических и биологических свойств и характеристик природной среды, нарушает ход естественных биохимических процессов. В ходе трансформации углеводородов нефти могут образоваться стойкие к микробиологическому расщеплению ещё более токсичные соединения, обладающие канцерогенными и мутагенными свойствами.

Известно, что *распушённые целлюлозные волокна* обладают великолепными свойствами поглощения нефтяных загрязнений: одна массовая доля волокна способна поглотить до 8-11 долей нефтепродукта! При этом целлюлозное волокно обладает большой универсальностью — может применяться одинаково успешно как на сухих покрытиях, так и на водной поверхности — благодаря низкой плотности материал обладает отличной плавучестью, низкой скоростью намокания и способен поглощать нефтепродукт прямо с поверхности воды [1].

Ежегодно в России накапливаются миллионы тонн отходов переработки однолетних растений, которые представляют научный интерес для многих исследователей. В частности солома и плодовые оболочки злаков рассматриваются как перспективные целлюлозосодержащие источники [2]. Основным досточнством отходов переработки однолетних злаков является ежегодная воспроизводимость и возможность переработки любыми способами.

На кафедре инженерной экологии Казанского национального исследовательского технологического университета (КНИТУ) [3-5] проведён ряд изысканий по влиянию различных параметров *высокочастовной (ВЧ)* плазмы пониженного давления на сорбционные свойства отходов льнопереработки.

Авторами исследовано изменение гидрофобных и олеофильных свойств **плодовых оболочек овса (ПОО)** под действием ВЧ-плазмы.

Исходный продукт — ПОО, имеющие следующие физико-механические свойства: насыпную плотность — $0.21\ e/cm^3$, влажность — $8.54\ \%$, зольность — $2.8\ \%$, плавучесть — $8.54\ \%$.

Для определения нефтеёмкости *сорбционного материала (СМ)* при температуре 20 °С использовалась *нефть карбонового отпожения (НКО)*, добытая НГДУ "Елховнефть" ОАО "Татнефть" с физико-химическими характеристиками, приведёнными в табл. 1.

Физико-химические показатели карбоновой нефти

Таблица 1

№	Наименование показателя	Значение
1	Плотность нефти при 20 °C, кг/м ³	901,6
2	Массовая доля воды, %	0,15
3	Массовая концентрация хлористых солей, мг/л (%)	61 (0,0068)
4	Массовая доля механических примесей, %	0,0182
5	Массовая доля серы, %	3,39
6	Массовая доля сероводорода, млн ⁻¹ (ррт)	87,5
7	Массовая доля метил- и этилмеркаптанов в сумме, млн (ррт)	3,6

В качестве плазмообразующих газов использовались: воздух, смеси пропана с бутаном, аргона с воздухом, аргона с пропаном в соотношениях 70:30.

Режимы, при которых проводилась обработка исследуемого реагента с варьированием природы и расхода плазмообразующего газа (Q), значений давления в рабочей камере плазмотрона (P), силы тока (I_a) и напряжения (U_a) на аноде и времени обработки (t), приведены в табл. 2.

Первоначально у полученных после плазменной обработки образцов ПОО определялись при температуре 20 °C значения нефтеёмкости в статических и динамических условиях (1 г сорбционного материала и 50 мл сорбата). На основании полученных результатов построены изотермы сорбции НКО в зависимости от времени взаимодействия и определены значения максимального нефтепоглощения в статических условиях.

Анализ кривых показал, что последние имеют гиперболический вид. Поглощение НКО происходит в течение первых пятнадцати минут контактирования исследуемых образцов. В последующем определялись значения нефтеёмкости исследуемых образцов ПОО в динамических условиях. Полученные результаты приведены в табл. 3. Номер образца ПОО соответствует режиму обработки плазмой, приведенному в табл. 2.

Таблица 2 Режимы обработки плодовых оболочек овса высокочастотной плазмой пониженного давления

No novembra	Входные параметры обработки						
№ режима обработки	Газ-носитель	Соотношение	Р, Па	I_a , A	$U_a, \ \kappa B$	t, мин	Q, г/сек
1	Пропан-бутан	70:30					
2	Аргон-воздух	70:30	26,6	0,5	7,5	1	0,06
3	Аргон-пропан	70:30	20,0	0,3	7,5		
4	Воздух						
5	Пропан-бутан	70:30					
6	Аргон-воздух	70:30	13,3	0,5	7,5	1	0,02
7	Аргон-пропан	70:30	13,3	0,3	7,3	1	0,02
8	Воздух						
9	Аргон-воздух	70:30	26,6	0,8	7,5	30	0,06
10	Аргон-пропан	70:30	20,0	0,8	7,5	30	0,00

Таблица 3 Значения максимальной нефтеёмкости и водопоглощения плазмообработанных образцов плодовых оболочек овса

образцов плодовых оболочек овса						
	Водопоглощение, г/г	Значения нефтеёмкости, г/г				
№ образца		в статических	в динамических			
		условиях	условиях			
Исходные ПОО	4,29	5,27	2,78			
1	2,83	5,56	2,46			
2	3,47	5,50	2,29			
3	2,36	6,78	3,42			
4	4,1	5,70	2,54			
5	2,45	6,63	3,36			
6	3,28	5,92	2,90			
7	2,57	6,30	3,27			
8	3,28	5,55	2,81			
9	3,24	5,66	2,80			
10	3,89	6,41	3,19			

Анализ полученных данных выявил следующие зависимости: наибольшие значения нефтеёмкости из исследуемых СМ имеют образцы ПОО, обработанные в атмосфере аргона с пропаном (режим N = 3) и пропана с бутаном (режим N = 5).

В последующем исследовалось удаление НКО с водной поверхности с использованием плазмомодифицированных образцов ПОО в связи с особой актуальностью проблемы локализации аварийных разливов нефтепродуктов в водных объектах. Для имитации разлива НКО при температуре 20 °С к 50 мл дистиллированной воды в чашке Петри доливалось 3 мл НКО, что составляло 2,67 г, и наносился сплошным слоем 1 г исследуемого СМ. По истечении определенных промежутков времени СМ с сорбированной НКО и водой удалялся, определялось остаточное количество нефти в воде и вычислялись значения водо- и нефтепоглощения [6, 7]. Полученные значения приведены в табл. 4.

Таблица 4 Значения нефте- и водопоглощения, степени удаления карбоновой нефти для образцов плодовых оболочек овса, обработанных ВЧ плазмой пониженного давления

No ofmone	Суммарное значение поглощенной воды	Нефте-	-	
№ образца	и нефти, г	поглощение, г/г	поглощение, г/г	удаления нефти, %
Исходная ПОО	3,39	1,63	1,76	61,05
1	3,06	2,14	0,92	80,15
2	2,94	2,38	0,56	89,14
3	3,16	2,665	0,495	99,81
4	3,54	2,08	1,46	77,90
5	2,83	2,57	0,26	96,25
6	3,02	2,43	0,59	91,01
7	3,16	2,19	0,97	82,02
8	3,13	1,97	1,16	73,78
9	2,99	1,19	1,8	44,57
10	3,05	2,6	0,45	97,38

По данным табл. 4 можно сделать вывод, что наибольшей степенью удаления НКО с водной поверхности и наименьшим значением водопоглощения обладают образцы, обработанные ВЧ-плазмой пониженного давления в режимах № 3 и 5. Очевидно, что воздействие плазмой способствует уменьшению водопоглощения образцами ПОО, за исключением образца № 9, что свидетельствует о гидрофобных свойств последнего.

В дальнейшем проводилась обработка ещё 30 образцов ПОО путем изменения значений I_a , U_a и t при постоянных значениях P и Q в атмосфере как пропана с бутаном, так и аргона с пропаном в соотношениях 70:30. Режимы проведения обработки приведены в табл. 5. Образцам ПОО, обработанным плазмой в атмосфере смеси пропана с бутаном, присвоены обозначения 11а-25а, в атмосфере смеси аргона с пропаном — 116-25б, соответственно.

Полученные образцы ПОО использовались для удаления нефти с водной поверхности. Полученные значения нефте- и водопоглощения, а также степень удаления НКО и изменение водопоглощения, приведены в табл. 6.

Таблица 5

Режимы плазменной обработки (варьирование параметров)

	Изменяемые параметры			
№ режима обработки	I_a, A	I_a , A U_a , κB		
11		1,5		
12		2,0		
13	0,6	2,5		
14		3,0	1	
15		3,5		
16	0,3			
17	0,4			
18	0,5	2,5		
19	0,7			
20	0,8			
21			3	
22			5	
23	0,6	2,5	10	
24			15	
25			20	

Постоянные величины: $P = 26,6 \ \Pi a, \ Q = 0,06 \ c/c$.

Таблица 6 Значения нефтеёмкости и водопоглощения для плазмообработанных образцов плодовых оболочек овса в эксперименте с нефтью карбонового отложения

natogorbia oboato tek obea b akenephmente e newtho kapoonobot o otatokenna						
№ образца	Суммарное значение поглощенной воды и нефти, г	Нефтеём- кость, г/г	Водопогло- щение, г/г	Степень удаления нефти, %		
Исходные ПОО	3,567	2,690	0,877	96,30		
11a/11б	3,370/3,385	2,701/2,698	0,669/0,687	99,92/99,82		
12a/12б	3,460/3,483	2,699/2,702	0,761/0,781	99,87/99,97		
13а/13б	3,399/3,402	2,668/2,701	0,731/0,701	98,72/99,92		
14а/14б	3,412/3,483	2,700/2,702	0,712/0,781	99,91/99,96		
15а/15б	3,400/3,398	2,701/2,699	0,699/0,699	99,95/99,85		
16а/16б	3,512/3,455	2,701/2,702	0,811/0,753	99,96/99,98		
17а/17б	4,214/3,482	2,702/2,702	0,756/0,780	99,97/99,96		
18а/18б	3,403/3,405	2,701/2,702	0,702/0,703	99,92/99,97		
19а/19б	3,500/3,470	2,699/2,681	0,801/0,789	99,88/99,18		
20а/20б	3,444/3,499	2,699/2,698	0,745/0,801	99,88/99,81		
21a/21б	3,397/3,464	2,700/2,701	0,697/0,763	99,91/99,88		
22a/22б	3,333/3,392	2,702/2,699	0,631/0,693	99,97/99,88		
23а/23б	3,475/3,424	2,700/2,699	0,775/0,725	99,88/99,85		
24а/24б	3,479/3,416	2,702/2,702	0,777/0,714	99,96/99,98		
25a/256	3,411/3,419	2,699/2,700	0,712/0,719	99,85/99,89		

Примечание:

- а) плазмообразующий газ смесь аргон-пропан,
- б) плазмообразующий газ смесь пропан-бутан.

Как следует из приведенных в табл. 6 данных, обработка ПОО плазмой пониженного давления в атмосфере аргона с пропаном и пропана с бутаном приводит к уменьшению водопоглощения в экспериментах по удалению НКО с водной поверхности. Данное обстоятельство объясняется образованием нанослоя углерода на поверхности СМ и подтверждается данными по водопоглощению плазмообработанных образцов ПОО, полученными в экспериментах с чистой водой и приведёнными в табл. 7.

Методика проведения эксперимента соответствовала описанному ранее. Время контактирования СМ с сорбатом составляло 15 *мин*. Значения водопоглощения, а также изменения, в сравнении с исходной ПОО, приведены в табл. 8.

Таблица 7 Значения водопоглощения для образцов плодовых оболочек овса

№ образца	Водопоглощение, г/г	Изменение водопоглощения, %
Исходных ПОО	3,841/3,704	
11а/11б	2,989/2,731	- 22,182/ - 26,269
12а/12б	3,452/3,684	- 10,127/ - 0,540
13а/13б	3,357/3,532	- 12,601/ - 4,644
14а/14б	3,618/3,521	- 5,806/ - 4,941
15а/15б	3,007/3,320	- 21,713/ - 10,367
16а/16б	3,653/3,153	- 4,895/ - 14,876
17а/17б	3,686/3,437	- 4,035/ - 7,208
18а/18б	3,154/3,129	- 17,886/ - 15,524
19а/19б	3,453/3,481	- 10,101/ - 6,020
20а/20б	3,079/3,430	- 19,838/ - 7,397
21а/21б	2,469/3,383	- 31,632/ - 8,666
22а/22б	2,483/2,974	- 35,355/ - 19,708
23а/23б	3,477/3,417	- 9,477/ - 7,748
24а/24б	3,421/3,235	- 10,935/ - 12,662
25а/25б	2,157/3,254	- 43,843/ - 12,149

Исходя из данных по степени удаления нефти и водопоглощения, приведенных в табл. 6 и 7, видно, что большей гидрофобностью из исследованных обладают образцы ПОО, обработанные ВЧ-плазмой пониженного давления в режимах №11а, 11б и 22б. Ввиду того, что степень удаления нефти исследуемыми СМ превышает 99 %, объём нефти увеличивался до 5 и 7 m на 50 m воды и исследовалось действие СМ, обработанных при наиболее оптимальных режимах, указанных выше.

Как видно из приведенных таблиц, наибольшая степень очистки от НКО и наименьшее водопоглощение наблюдается при использовании ПОО, обработанных в атмосфере смеси аргона с пропаном в режиме №11б.

Значения нефте- и водопоглощения для образцов плодовых оболочек овса

	Суммарное значе-	Нефтепог-	Водопо-	Степень	Изменение		
№ образца	ние поглощенной	лощение,	глощение,	удаления	водопогло		
•	воды и нефти, г	z/z	zlz	нефти, %	щения, %		
	Объём нефті	u – 5 мл на во	дной поверхно	сти			
Исходные ПОО	5,180	4,504	1,185	99,98			
11a	4,647	4,495	0,984	99,78	- 16,94		
116	4,870	4,499	0,840	99,86	- 29,10		
226	4,970	4,503	0,896	99,97	- 24,42		
	Объём нефти – 7 мл на водной поверхности						
Исходные ПОО	6,699	6,305	0,394	99,97			
11a	6,569	6,302	0,267	99,93	- 32,27		
11б	6,519	6,302	0,217	99,93	- 44,97		
226	6,589	6,302	0,287	99,92	- 27,08		

Таким образом, исследована возможность использования ПОО в качестве СМ по отношению к НКО:

- определены значения нефтеёмкости в статических и динамических условиях;
- проведена обработка ПОО ВЧ-плазмой пониженного давления. Найдены, параметры обработки, приводящие к увеличению значения нефтепоглощения в экспериментах с нефтями карбоновых отложений: плазмообразующий газ пропан-бутан, давление в рабочей камере $P=26,6\ \Pi a$, сила тока на аноде $I_a=0,6\ A$, напряжение на аноде $U_a=1,5\ \kappa B$, расход плазмообразующего газа $Q=0,06\ \varepsilon/c$, время обработки $t=1\ muh$;
- выявлено, что наибольшая степень очистки от НКО наблюдается при использовании образца №116 для ПОО, обработанных смесью газов аргона с пропаном 99.93 %.

Литература

- 1. *http*://www.ecovata36.ru/index.php?option=com_content&view=article&id=79& Itemid=161 (дата обращения: 18.01.2012).
- 2. *Будаева В.В.* Недревесные целлюлозы // Матер. 4-й Всеросс. науч.-практ. конф. студентов, аспирантов и молодых ученых "Технологии и оборудование химической, биотехнологической и пищевой промышленности". Бийск, 2011. С. 133-142.
- 3. *Абдуллин И.Ш.* Получение сорбентов из отходов сельскохозяйственного производства с помощью плазмы ВЧ разрядов пониженного давления // Известия Академии промышленной экологии. -2002. -№ 2. -C. 78-83.
- 4. *Шайхиев И.Г.* Отходы переработки льна в качестве сорбентов нефтепродуктов. 3. Влияние высокочастотной низкотемпературной плазмы на нефтепоглощение и гидрофобность // Вестник Башкирского Университета. − 2010. − № 3. − С. 610-614.
- 5. **Шайхиев И.Г.** Влияние плазменной обработки льняной костры на удаление разливов девонской нефти с водной поверхности // Вестник Казанского технологического университета. 2011. № 8. С. 165-171.
- 6. **Шайхиев И.Г.** Исследование удаления нефтяных пленок с водной поверхности плазмообработанными отходами злаковых культур. 1. Лузгой овса // Вестник Казанского технологического университета. 2011. № 12. С. 110-118.
 - 7. *Смирнов А.Д.* Сорбционная очистка воды. Л.: Химия, 1982. 168 с.