В.П. Назаров, А.А. Киршев

(Академия Государственной противопожарной службы МЧС России; e-mail: kirschew@yandex.ru)

ВЕНТИЛЯЦИЯ РЕЗЕРВУАРОВ ПЕРЕД РЕМОНТНЫМИ РАБОТАМИ

Проведён анализ пожарной опасности вентиляции технологического оборудования резервуаров с газами, индивидуальными и многокомпонентными жидкостями.

Ключевые слова: пожарная опасность, очистка, ремонтные и огневые работы, технологическое оборудование, резервуар, вентиляция.

V.P. Nazarov, A.A. Kirshev VENTILATION OF TANKS BEFORE THE REPAIR WORK

The analysis of fire danger ventilation of process equipment storage tanks with gas, individual and multi-component liquids.

Key words: fire danger, cleaning, repair and hot work, process equipment, tank, ventilation.

Техническое перевооружение и реконструкция промышленных предприятий практически всегда связаны с проведением ремонта, антикоррозийной защиты и огневых работ на резервуарах.

К огневым работам относятся производственные операции, сопровождающиеся искрообразованием или нагреванием резервуаров до температур, способных вызвать воспламенение горючих веществ и материалов. Известны следующие виды огневых работ: абразивная очистка, клёпка, нагрев паяльными лампами, сварка, резка, направленный (кумулятивный) взрыв с применением инуровых кумулятивных зарядов (ШКЗ) и удлинённых кумулятивных зарядов (УКЗ).

При проведении огневых работ проявляются три основных фактора пожарной опасности.

Во-первых, подлежащее ремонту, демонтажу или реконструкции оборудование обычно выводится из нормального технологического режима с возникновением условий для свободного контакта горючего с окислителем и образования взрывоопасных смесей.

Во-вторых, при выполнении электрогазосварочных, газорезательных и других операций применяются технологические источники зажигания с использованием открытого пламени.

В-третьих, неизбежное присутствие рабочих у резервуаров при пожарах и взрывах, как правило, приводит к травматизму и гибели людей.

Вероятность воздействия *опасных факторов пожара (ОФП)* при ремонтных огневых работах на технологическом оборудовании существенно превышает нормативный уровень (например, на резервуарах в 200 раз).

Треть всех пожаров происходит от самовозгорания пирофорных отложений, неосторожного обращении с огнём, искр механического происхождения, поджогов [3].

Пожары, связанные с ремонтными работами происходят:

- в процессе проведения технологических операций по очистке резервуара перед осмотром и ремонтом -29.2 %, что подтверждает вывод о повышенной пожарной опасности традиционных способов очистки;
- в момент проведения ремонта, в том числе огневых работ на предварительно очищенных резервуарах 50 %. Это, видимо, указывает на необходимость переработки нормативно-технической документации, регламентирующей технику, технологию и пожаровзрывобезопасность очистных работ, а также на отсутствие надёжной техники и технологии по предремонтной подготовке;
- при проведении работ по ремонту и обслуживанию резервуаров без их предварительной очистки 20,8 %, что свидетельствует о низкой квалификации обслуживающего персонала и целесообразности разработки способов обеспечения пожаровзрывобезопасности при проведении огневых работ на резервуарах без их предварительной очистки [3].

Пожарная безопасность объекта защиты считается обеспеченной, если:

- в полном объёме выполнены обязательные требования пожарной безопасности, установленные федеральными законами о технических регламентах;
 - пожарный риск не превышает допустимых значений.

Согласно закону [1], к объекту защиты можно отнести технологический аппарат, подвергаемый регламентному обслуживанию, ремонту или предремонтной подготовке, в этом случае должна быть разработана *система обеспечения пожарной безопасности (СОПБ)*.

Целью создания СОПБ объекта защиты является предотвращение пожара, пожаротушение, дымоудаление, пожарная сигнализация, оповещение и эвакуация людей. В соответствии с требованиями федерального законодательства, система обеспечения пожарной безопасности объекта защиты (ремонтируемого резервуара) должна включать в себя:

- систему предотвращения пожара;
- систему противопожарной защиты;
- комплекс организационно-технических мероприятий по обеспечению пожарной безопасности.

СОПБ объекта защиты в обязательном порядке должна содержать комплекс мероприятий, исключающих возможность превышения значений допустимого пожарного риска, установленного Федеральным законом [1], и направленных на предотвращение опасности причинения вреда третьим лицам в результате пожара.

Способы исключения условий образования горючей среды при предремонтной подготовке и ведении ремонта резервуаров нефтегазового комплекса изложены в статье 49 [1], в которой говорится, что исключение условий образования горючей среды должно обеспечиваться поддержанием безопасной концентрации в среде окислителя и (или) горючих веществ, а также понижением концентрации окислителя в горючей среде в защищаемом объёме.

На практике выделяют следующие способы дегазации резервуаров: вентиляция (естественная вентиляция, дефлекторная аэрация, принудительная вентиляция) и пропаривание.

Вентилируемый резервуар может содержать газы, индивидуальные жидкости (гексан, гептан, толуол, спирты и т.п.) и многокомпонентные углеводородные жидкости (бензин, керосин, дизельное топливо, нефть и т.д.). Рассмотрим несколько частных случаев.

Вентиляция резервуаров с газами (парами легковоспламеняющихся жидкостей)

Процесс вентиляции может быть описан уравнением материального баланса:

$$V d\varphi + q\varphi_z d\tau - \varphi_n q d\tau = 0, \tag{1}$$

где V – объём резервуара, M^3 ;

 φ – концентрация углеводорода в газовом пространстве, $\kappa 2/M^3$;

 φ_{z} , φ_{n} — концентрация газа (пара) в газовом пространстве и в приточном воздухе, $\kappa z/M^{3}$ (принимаем $\varphi_{z} = \varphi$);

q – производительность вентилятора, m^3/c ;

au — коэффициент неравномерности распределения концентрации газа (пара) в резервуаре.

Решение однородного дифференциального уравнения (1) способом разделения переменных относительно времени имеет вид:

$$\tau = \frac{V}{\eta q} \ln \frac{\varphi_0 - \varphi_n}{\varphi_{\delta e3} - \varphi_n},\tag{2}$$

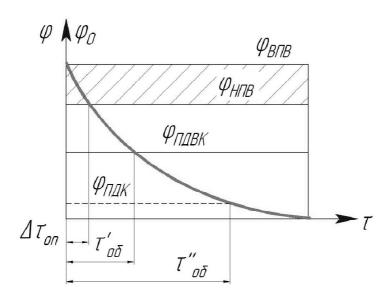
где η – коэффициент, принимаемый по табл. 1 [4], в зависимости от скорости и температуры воздушного потока над поверхностью испарения;

 φ_0 — начальная концентрация газа (пара) в газовом пространстве резервуара, $\kappa z/m^3$;

 $\varphi_{\text{без}}$ – безопасная концентрация газа (пара) в газовом пространстве резервуара, $\kappa z/m^3$.

Таблица 1 Значение коэффициента **η** в зависимости от скорости и температуры воздушного потока

Скорость воздушного потока в помещении, <i>м</i> · <i>c</i> ⁻¹	Значение коэффициента η при температуре t , °C, воздуха в помещении				
	10	15	20	30	35
0	1,0	1,0	1,0	1,0	1,0
0,1	3,0	2,6	2,4	1,8	1,6
0,2	4,6	3,8	3,5	2,4	2,3
0,5	6,6	5,7	5,4	3,6	3,2
1,0	10,0	8,7	7,7	5,6	4,6


Безопасная концентрация в газовом пространстве резервуара рассчитывается по формуле:

$$\varphi_{\text{fe3}} = \frac{\varphi_{\text{H}}}{K_0^H},\tag{3}$$

где $\varphi_{\rm H}$ — нижний концентрационный предел распространения пламени, $\kappa c/m^3$; K_δ^H — коэффициент безопасности, принимаемый в соответствии с [3] равным 20.

Нижний предел воспламенения для большинства углеводородов, нефтей и нефтепродуктов колеблется в пределах $30\text{--}50\ \emph{e/m}^3$ (0,8-2 % $\emph{o}\emph{o}$.). С учётом коэффициента безопасности предельно допустимая взрывобезопасная концентрация будет составлять примерно $2\ \emph{e/m}^3$ (0,05 % $\emph{o}\emph{o}$.).

Значение безопасной концентрации принимается равным *предельно допустимой концентрации* (ПДК) при выполнении работ без противогазов и *предельно допустимой взрывоопасной концентрации* (ПДВК) при ремонтных работах снаружи аппарата (рис. 1).

Рис. 1. Изменение концентрации горючего газа (пара легковоспламеняющейся жидкости) при вентиляции резервуара без жидкой фазы

Пожаровзрывоопасность вентиляции определяется образованием горючей среды внутри и снаружи аппарата при возможных источниках зажигания, связанных с работой вентиляторов:

- продолжительность вентиляции опасного периода $\Delta \tau_{on}$;
- продолжительность вентиляции $au'_{o\delta}$ до $au_{nog\kappa}$;
- продолжительность вентиляции τ''_{oo} до $\varphi_{n\partial\kappa}$.

Критерий взрывоопасности может быть определён из отношения продолжительности снижения концентрации τ_{on} до значения $\varphi_{\scriptscriptstyle H}$ к общей длительности процесса τ_{oo} :

$$\Pi_{BO} = \frac{\Delta \tau_{on}}{\tau_{oo}} \,.$$
(4)

При $\phi_{\scriptscriptstyle H}=0$ и $\tau_{oar{o}}= au_{oar{o}}^{'}$ критерий взрывоопасности может быть определён по формуле:

$$\Pi_{BO} = \frac{\ln \varphi_s - \ln \varphi_H}{\ln \varphi_s - \ln \varphi_{\Pi JBK}},$$
(5)

где φ_s – концентрация насыщенного пара, $\kappa z/m^3$;

 $\varphi_{\Pi I\!I\!J\!BK}$ — предельно допустимая взрывоопасная концентрация, $\kappa \varepsilon/M^3$.

Мерами пожарной профилактики являются применение искробезопасного вентилятора и взрывобезопасного электрооборудования, а также выброс газовоздушной смеси через газоотводную трубу для обеспечения безопасного рассеивания паров, улавливание паров путём их сорбции и конденсации.

Вентиляция резервуаров с индивидуальными жидкостями

В общем виде процесс вентиляции резервуаров можно описать однородным дифференциальным уравнением баланса массы:

$$V d\varphi + q \eta \varphi d\tau - q \varphi_n d\tau = M d\tau , \qquad (6)$$

где M – массовая скорость испарения, $\kappa z/c$.

Интенсивность испарения W может быть определена [4]:

$$W=10^{-6}\,\eta\,\sqrt{\mu}\,P_{\!\scriptscriptstyle H}$$
 ,

где μ – молекулярная масса жидкости, $\kappa r \cdot \kappa monb^{-1}$;

 $P_{\!\scriptscriptstyle H}$ — давление насыщенного пара при расчётной температуре жидкости t_p , $\kappa \Pi a$, определяемое по справочным данным, или по формуле:

$$M = \beta(\varphi_s - \varphi)F_U, \tag{7}$$

где β – коэффициент массопереноса, m/c;

 F_{U} – площадь испарения, M^{2} .

Процесс вентиляции можно разделить на три периода:

- неустановившийся;
- основной;
- завершающий.

Неустановившийся и завершающий периоды характеризуются непрерывным уменьшением взрывоопасной концентрации во времени. Основной период на резервуарах из-под индивидуальных жидкостей является стационарным (рис. 2a).

Система уравнений (6) и (7) относительно времени при $\beta = {\rm const}$ и $\varphi_{\Pi} = 0$ имеет следующие решения:

- неустановившийся период:

$$\tau_1 = \frac{V}{q + \beta F_M} \ln \frac{q \varphi_0 + \beta F_M(\varphi_0 - \varphi_s)}{q \varphi_1 + \beta F_M(\varphi_1 - \varphi_s)},\tag{8}$$

где φ_1 – концентрация внутри резервуара в конце первого периода вентиляции, $\kappa z/m^3$.

- основной (стационарный) период, $d\varphi = 0$:

$$\tau_2 = \frac{(q + F_H \beta)G_0}{q\beta F_H \varphi_S},\tag{9}$$

где G_0 – количество жидких остатков в резервуаре, κz ;

- завершающий период (дегазация):

$$\tau_3 = \frac{V}{q} \ln \frac{F_H \beta \varphi_S}{(q + \beta F_H) \varphi_{\delta \varphi_S}}.$$
 (10)

Вентиляция резервуаров с многокомпонентными жидкостями

Отличительной особенностью процесса вентиляции резервуаров с многокомпонентными жидкостями (бензин, керосин, нефть) является нестационарность второго периода из-за непрерывного изменения свойств испаряющейся жидкости (рис. 2δ).

Уравнение материального баланса для этого случая имеет вид:

$$V d\varphi + q\varphi_q d\tau = M_0 e^{-\alpha \tau} d\tau, \qquad (11)$$

где M_0 – начальная массовая скорость испарения, $\kappa z/c$;

 α — коэффициент, учитывающий свойства нефтепродукта, 1/c (определяется экспериментально).

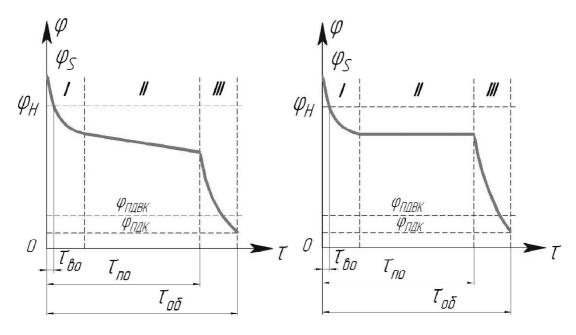
Для первого периода можно принять:

$$\varphi(\tau_1) = \frac{M_0}{q - \alpha V}; \quad \varphi(0) = \varphi_0,$$

тогда уравнение (11) можно записать в следующем виде:

$$\tau_1 = \frac{V}{2q} \ln \frac{\varphi_0 - \frac{M_0}{q}}{\frac{M_0}{2q - \alpha V} - \frac{M_0}{q}} . \tag{12}$$

Время второго периода находится путём решения уравнения (11) методом вариации переменной исходя из условия, что вся жидкость во время вентиляции испарилась:


$$G_0 = \int_0^{\tau_2} \varphi(\tau) q d\tau, \tag{13}$$

тогда τ_2 можно рассчитать по следующей формуле:

$$\tau_2 = \frac{1}{\alpha} \ln \left| \frac{\frac{M_0 q}{\alpha (q - \alpha V)}}{\frac{M_0 q}{\alpha (q - \alpha V)} - G_0} \right|. \tag{14}$$

Продолжительность завершающего (третьего) периода можно определить по формуле:

$$\tau_3 = \frac{V}{q} \ln \frac{\frac{M_0 q}{q - \alpha V} - \frac{\alpha G_0}{q}}{\varphi_{\delta e_3}}.$$
 (15)

а – индивидуальная жидкость

 δ – многокомпонентная жидкость

Рис. 2. Изменение концентрации паров жидкости во времени при наличии в аппарате жидкой фазы:

 au_{eo} – продолжительность опасности взрыва;

 au_{no} – продолжительность опасности пожара;

 $au_{o \delta} = au_1 + au_2 + au_3$ – общая продолжительность вентиляции

Для снижения уровня пожаровзрывоопасности целесообразно правильно подбирать вентилятор из расчёта:

- для многокомпонентной жидкости

$$q_{\delta e_3} \ge \frac{M_0 K_\delta^H}{\varphi_{\rm H}};\tag{16}$$

- для индивидуальной жидкости

$$q_{\delta e_3} \ge \frac{\beta F_H K_\delta^H (\varphi_S - \varphi_H)}{\varphi_H}.$$
 (17)

При соблюдении условий (16) и (17) параметр (вероятность) пожаровзрывоопасности можно определить по формуле:

$$\Pi_{n60} = \frac{\tau_1 + \tau_2}{\tau_{o6}},\tag{18}$$

а параметр (вероятность) взрывоопасности из соотношения:

$$\Pi_{60} = \frac{\tau_1}{\tau_{00}},$$
(19)

При вентиляции аппаратов с легколетучими жидкостями происходит быстрое снижение концентрации до взрывобезопасного значения и испарение остатков жидкости, в аппаратах при $q>q_{\textit{бe}3}$ взрывоопасные концентрации не образуются. Для аппаратов из-под высококипящей жидкости с $t_{\text{кип}}>250~^{\circ}C$ вентиляция нерациональна из-за её большой продолжительности, поэтому требуется подогрев воздуха или пропарка аппарата.

Литература

- 1. **Федеральный** закон Российской Федерации от 22 июля 2008 г. № 123-ФЗ "Технический регламент о требованиях пожарной безопасности".
- 2. *Назаров В.П.* Обеспечение пожаровзрывобезопасности при ликвидации аварий и ЧС на объектах транспорта и хранения нефти и нефтепродуктов //Материалы XXI международной научно-практической конференции "Актуальные проблемы пожарной безопасности". Часть 1. М.: ВНИИПО, 2009. С. 166-169.
- 3. *Назаров В.П.* Обеспечение пожарной безопасности огневых ремонтных работ на технологическом оборудовании (лекция). М.: ВИПТШ МВД России, 1992.
- 4. *Методика* определения расчётных величин пожарного риска на производственных объектах / Утверждена приказом МЧС России от 10.07.2009 г. № 404.

Статья опубликована 6 августа 2012 г.