Хаммади Мустафа

(Петербургский государственный университет путей сообщения Императора Александра I; e-mail: lbsvatovskaya@yandex.ru)

ТЕХНОЛОГИЯ ПОВЫШЕНИЯ ПРОЧНОСТИ БЕТОННЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ С ИСПОЛЬЗОВАНИЕМ НАНОРАСТВОРОВ

Предложен метод повышения прочности бетонных строительных конструкций с использованием эффекта поглощения нанорастворов (на примере кремнезоля).

Ключевые слова: прочность, поглощение, нанораствор, кремнезоль.

Hammadi Mustafa

TECHNOLOGY TO INCREASE THE STRENGTH OF CONCRETE BUILDING STRUCTURES USING NANOSOLUTIONS

A method for increasing the strength of concrete building structures using nanosolution absorption effect (for example silica sol) was proposed.

Key words: strength, absorption, nanosolution, silica sol.

Статья поступила в редакцию Интернет-журнала 9 марта 2014 г.

В развитие [1-7], предложен метод повышения прочности строительных конструкций на цементной основе с использованием эффекта поглощения кремния в процессе их твердения (рис. 1).

- •Анализ существующих методов повышения прочности, других строительно-технических и эксплуатационных свойств изделий (литературный обзор) и их критическая оценка
- •Доказательство возможного взаимодействия кремнезоля, поглощенного конструкциями с составляющими твердеющей цемент-содержащей смеси
- •Обоснование основных показателей технологии поглощения кремнезоля и введение соответствующего показателя поглощения
- •Определение строительно-технических свойств конструкций с учетом поглощения кремнезоля при твердении водного раствора
- •Определение физической структуры материала с кремнезолем, поглощенным при твердении водного раствора
- •Опытно-промышленное опробование технологии изготовления конструкций методом поглощения кремнезоля
- •Эколого-экономический анализ достигнутых результатов

Рис. 1. Метод повышения прочности цемент-содержащих конструкций при использовании эффекта поглощения кремнезоля в процессе их твердения

В основе этого метода лежит использование двух самопроизвольных явлений — капиллярного подсоса, который характерен для цемент-содержащих конструкций (как капиллярно-пористых тел), и химического взаимодействия частиц кремезоля с составляющими цементного камня — гидросиликатами и гидроксидом кальция.

Термодинамический расчёт показал, что кремнезоль, существующий в щелочной среде в виде силикат-ионов разной степени полимеризации с условным мономером формулы $SiO_2 \cdot H_2O$, взаимодействует с составляющими камня с образованием гидросиликатов; при этом наиболее отрицательное изменение значения ΔG^0_{298} оказалось для реакции (1):

$$5Ca(OH)_2 + 6(SiO_2 \cdot H_2O) = 5CaO \cdot 6SiO_2 \cdot 5,5H_2O + 5,5H_2O; \Delta G^{0}_{298} < 0.$$
 (1)

Возможность химического взаимодействия твердеющих конструкций и раствора кремнезоля подтверждена физико-химическими исследованиями. По данным рентгенофазового анализа, в присутствии кремнезоля происходит снижение линии $Ca(OH)_2$, что говорит о связывании этой фазы; этот же вывод подтвердили дериватографический и ИК-спектральный методы анализа.

В качестве объектов исследования были выбраны конструкции средней плотности D400, D500, D600 (в виде пенобетонных) и мелкозернистый бетон D2000, которые характеризуются соответствующими величинами водопоглощения (табл. 1).

Таблица 1 Составы и водопоглощение исходных бетонных конструкций

Средняя	Pac	Расход материалов на 1 м ³ бетона, кг							
плотность, кг/м ³	Цемент, марка 500	Песок	Вода, л	Пено- добавка, <i>л</i>	Расплыв, см				
D400	310	_	150	0,80	24				
D500	350	60	160	0,70	24				
D600	350	160	175	0,65	24				
D2000	500	1500	275	_	2,0				

В дальнейшем производились систематические исследования технологии поглощения, для чего приготавливались образцы-балочки $4\times4\times16~cm^3$ и кубы $10\times10\times10~cm^3$, которые твердели в стандартных условиях и помещались в раствор кремнезоля на глубину 1 cm в разные сроки твердения. Опыты проводились на модельном растворе кремнезоля, полученного на катионообменной колонке из раствора Na_2SiO_3 , а также на промышленном растворе кремнезоля, который имел следующий состав: $SiO_2 - 30,5\%$; $Na_2O - 0,35\%$; pH - 10,2; плотность $-1,205~c/cm^3$; вязкость $-6,8~m\Pi a \cdot c$; размер частиц -12~m.

Промышленный раствор разбавлялся до разных концентраций, помещался в ванну, в которую затем погружались образцы.

В начале эксперимента было определено время максимального насыщения — 10 часов. Были определены концентрационная зависимость раствора кремнезоля, времени предварительного твердения образцов перед поглощением кремнезоля по *критерию прочности при сжатии*, достигаемой в "возрасте" 28 суток нормального твердения. Концентрационная зависимость *прочности* образцов на растяжение *при изгибе* и *при сжатии* в "возрасте" 28 суток, показана в табл. 2 и 3.

Таблица 2 Концентрационная зависимость прочности конструкций на растяжение при изгибе

Средняя	Прочность, МПа/% при концентрации кремнезоля, %								
плотность, кг/м ³	0 (контр.)	1,5	3	4,5	6	7,5	9		
D400	0,14 / 100	0,26 / 184	0,24 / 172	0,22 / 157	0,2 / 142	0,17 / 121	0,16 / 114		
D500	0,72 / 100	1,23 / 170	1,18 / 163	1,15 / 159	1,11 / 154	1,07 / 148	1,02 / 141		
D600	1,05 / 100	1,49 / 141	1,34 / 127	1,26 / 120	1,21 / 115	1,18 / 112	1,16 / 110		
D2000	4,22 / 100	7,03 / 166	6,50 / 154	6,31 / 149	6,19 / 146	6,02 / 142	5,93 / 140		

Таблица 3 Прочность конструкций при сжатии в зависимости от концентрации кремнезоля

Средняя	Прочн	Прочность при сжатии, МПа/% при концентрации кремнезоля, %									
плотность, кг/м ³	0 (контр.)	1,5	3	4,5	6	7,5	9				
D400	0,46 / 100	0,80 / 173	0,72 / 156	0,68 / 147	0,64 / 139	0,62 / 134	0,60 / 130				
D500	1,05 / 100	2,09 / 199	1,92 / 182	1,82 / 173	1,74 / 165	1,68 / 160	1,55 / 147				
D600	1,36 / 100	2,71 / 199	2,61 / 191	2,56 / 188	2,51 / 184	2,42 / 177	2,31 / 169				
D2000	14,08 /100	24,61 /174	19,52 /139	18,20 / 129	17,57 / 125	16,89 /120	16,33 /116				

В табл. 4 и 5 показано влияние времени твердения конструкций перед поглощением кремнезоля.

Таблица 4
Зависимости прочности конструкций на растяжения при изгибе от времени твердения перед поглощением кремнезоля

Прочность на растяжение при изгибе в "возрасте" до 28 суток, МПа/%											
Средняя]	Время твердения перед поглощением кремнезоля, сут.									
плотность, кг/м ³	0 (контр.)	0 (контр.) 3 5 7 14 21 28									
D400	0,14 / 100	0,26 / 185	0,21 / 150	0,21 / 142	0,196 / 140	0,192 / 137	0,188 / 134				
D500	0,73 / 100	1,25 / 171	1,20 / 164	1,14 / 156	1,05 / 144	0,99 / 136	0,95 / 130				
D600	1,06 / 100	1,54 / 145	1,51 / 142	1,48 / 139	1,43 / 134	1,41 / 133	1,38 / 130				
D2000	4,23 / 100	7,03 / 166	6,15 / 145	5,95 / 141	5,07 / 120	4,60 / 109	4,35 / 103				

Прочность конструкции при сжатии в зависимости от времени твердения перед поглощением кремнезоля

Прочность при сжатии, МПа/ % в "возрасте" до 28 суток											
Средняя	1	Время твердения перед поглощением кремнезоля, сут.									
плотность, кг/м ³	0 (контр.)) (контр.) 3 5 7 14 21 28									
D400	0,45 / 100	0,80 / 173	0,71 / 154	0,66 / 143	0,61 / 132	0,60 / 130	0,58 / 126				
D500	0,93 / 100	2,09 / 225	1,95 / 210	1,65 / 177	1,50 / 161	1,32 / 142	1,19 / 128				
D600	1,37 / 100	2,67 / 194	2,34 / 170	2,19 / 159	1,95 / 142	1,84 / 134	1,78 / 129				
D2000	14,08 /100	24,61 / 175	22,18 / 158	20,65 /147	19,73 /140	18,52 / 131	17.25 /122				

Табл. 2 и 3 показывают, что наилучшие результаты по прочности в "возрасте" 28 суток соответствуют 1,5 %-му раствору поглощённого кремнезоля, который взаимодействует с образцами конструкций предварительно 3-суточного твердения — табл. 4 и 5. Следует отметить, что повышение прочности значительное и для отдельных средних плотностей оно превышает дву-кратное.

В дальнейших исследованиях было определено количество поглощаемого кременезоля с учётом массы поглощённого раствора и его процентной концентрации, (табл. 6). Это количество было названо *ёмкостью поглощения*, C, $\kappa z/m^3$ (это новая и принципиально важная величина, характеризующая технологию поглощения).

Также было определено примерное количество гидросиликатов (графа 5) как характеризующееся наиболее отрицательным значением величины ΔG^0_{298} . Повышение прочности при той же плотности поднимает удельную прочность конструкций (коэффициент конструктивного качества, графа 7, табл. 6).

В этой же таблице (графа 4) показано количество кремнезоля, отнесённое к цементу; можно увидеть что, количественный предел соответствует 0,08-0,1 от массы пемента.

Таблица 6 Ёмкость поглошения и удельная прочность конструкций

Средняя плотность конструк- ций, кг/м ³	Масса поглощен- ного 1,5 %- раствора кремнезо- ля, кг/м ³	Количество погло- щённого кремнезоля, ёмкость поглощения, С, кг/м ³	% от массы цемен- та	Рассчитан- ное при- мерное количество гидросили- катов, кг/м ³	Удельная прочность, (коэффициент конструктивного качества), МПа/% контр. с золем	
D400	16	0,24	0,077	0,379	1,12/100	2,00 /178
D500	20	0,30	0,085	0,473	1,86/100	4,18/224
D600	25	0,36	0,100	0,568	2,28/100	4,45/195
D2000	32	0,48	0,096	0,758	7,04/100	12,3/174

Совместно с Байдарашвили М.М. был выполнен эколого-экономический анализ полученных результатов и в табл. 7 показано повышение с начального уровня классов и марки бетона разной средней плотности (сравнение граф 2 и 4, 3 и 5) при использовании эффекта поглощения кремнезоля.

Таблица 7 Изменения классов бетона разной средней плотности с поглощением раствора кремнезоля

Сранцая и потность	Кла	сс бетона по	Повышение		
Средняя плотность конструкций, кг/м ³	ближайша	ая марка бет	прочности		
конструкции, кам	контрольный		с золем		на сжатие, %
D400	B0,35	M5	B0,75	M10	78 %
D500	B0,75	M10	B1,5	M20	124 %
D600	B1	M15	B2.0	M25	94 %
D2000	B10	M150	B20	M250	75 %

В табл. 8 приведены результаты экологического анализа, выполненного также совместно с М.М. Байдарашвили, который показывает экономию природных ресурсов, топлива, электроэнергии при производстве бетонных конструкций с использованием нанорастворов, на примере раствора кремнезоля, за счёт повышения коэффициента конструктивного качества (табл. 6).

Таблица 8 Ресурсосохранность и энергосохранность при производстве бетонных конструкций с использованием нанорастворов за счёт экономии цемента

		D D U I I C II I	Purch	P				
	a pa		Экономия ресурсов				3	
нных ций ным нем мента ве бетона 4 раствора	мнезоля 10го ёмкость С, кг/м ³	на 1 ко	на 1 <i>м</i> ³ бетонных конструкций			на 1000 м ³ бетонных конструкций		
Марка бетонных конструкций с поглощённым кремнезолем	Экономия цем при производстве с использованием кремнезоля, к	Количество кре поглощенн конструкцией, поглощения,	природных ресурсов, кг	топлива, кг	электроэнергии, кВт/ч	природных ресур- сов, <i>тонн</i>	топлива, <i>тонн</i>	электроэнергии, кВт/ч
M10	10 / 3,1	0,24	20	2,1	0,9	20	2,1	900
M20	40 / 11,1	0,30	80	8,4	3,6	80	8,4	3600
M25	30 / 6,7	0,36	60	6,3	2,7	60	6,3	2700
M250	110 / 33,3	0,48	220	23,1	9,9	220	23,1	9900

Выводы

- 1. Предложен метод повышения прочности цементных конструкций с использованием эффекта самопроизвольного поглощения ими кремнезоля в процессе твердения его водного раствора. Обосновано физико-химическими и инструментальными методами, что процесс взаимодействия кремнезоля с продуктами гидратации портландцемента сопровождается образованием гидросиликатов.
- 2. Определены механо-физические свойства конструкций, полученных поглощением кремнезоля в процессе твердения его водного раствора.
- 3. Предложенный метод приводит к снижению стоимости строительных конструкций.

Литература

- 1. Сватовская Л.Б., Шершнева М.В., Хаммади Мустафа, Савельева М.Ю., Бойкова Т.И. Улучшение строительных и геоэкозащитных свойств минерального сырья и конструкций в транспортном строительстве // Транспортное строительство. 2013. № 4. С. 30-32.
- 2. *Сватовская Л.Б., Сычева А.М., Хаммади Мустафа, Бойкова Т.И.* Использование метода капиллярного подсоса нанорастворов для развития геоэкозащитных строительных технологий транспорта // Известия ПГУПС. 2013. № 3. С. 67-72.
- 3. *Сватовская Л.Б., Сычева А.М., Степанова И.В., Хаммади Мустафа.* Некоторые геоэкологические аспекты строительной деятельности на инженерно-химических основах // Естественные и технические науки. 2013. № 3. С. 149-151.
- 4. *Сватовская Л.Б.* Энергетический аспект геоэкологической защиты при транспортном строительстве // Транспортное строительство. 2014. № 3. С. 30-31.
- 5. *Сватовская Л.Б.*, *Сычева А.М.*, *Макарова Е.И.*, *Шершнева М.В. и др.* Энергетическое обоснование геоэкозащитных свойств минеральных строительных материалов // Технологии техносферной безопасности: интернет-журнал. Вып. 1 (53). 2014. 7 с. http://ipb.mos.ru/ttb.
- 6. *Сватовская Л.Б.*, *Макарова Е.И.*, *Шершнева М.В.*, *Байдарашвили М.М. и др.* Геоэкозащитные абсорбционные нефтепоглощающие свойства строительных материалов и изделий // Технологии техносферной безопасности: интернет-журнал. Вып. 2 (54). 2014. 7 с. http://ipb.mos.ru/ttb.
- 7. *Сватовская Л.Б.* Некоторые информационные признаки для классификации частиц наноразмера // Естественные и технические науки. 2012. № 5. С. 247-249.