Е.С. Крееренко

(Южный федеральный университет; e-mail: talla92xlc@gmail.com)

СИНЕРГЕТИЧЕСКОЕ УПРАВЛЕНИЕ АВИАЦИОННО-КОСМИЧЕСКОЙ СИСТЕМОЙ НА БАЗЕ СВЕРХТЯЖЁЛОГО САМОЛЁТА-АМФИБИИ

Анализируется загрязнение вод Мирового океана в результате аварий при запуске космических кораблей с платформы "Морской старт". Предлагается применение альтернативной авиационно-космической системы на базе сверхтяжёлого самолёта-амфибии, повышающей экологическую безопасность океана.

Ключевые слова: авиационно-космическая система, самолёт-амфибия.

E.S. Kreerenko

SYNERGETIC CONTROL OF AEROSPACE SYSTEM BASED ON SUPERHEAVY AMPHIBIOUS AIRCRAFT

Analysis of oceans pollution during spacecraft launching accidents from platform "Sea Launch". Using an alternative aerospace system, based on super-heavy amphibian aircraft, which increases technosphere safety are proposed.

Key words: aerospace system, amphibian.

Статья поступила в редакцию Интернет-журнала 24 июля 2014 г.

Проблема техносферной безопасности имеет два аспекта. Первый – воздействие техносферы на человека и окружающую среду и, наоборот, воздействие антропогенного фактора и внешних возмущений со стороны окружающей среды на техносферу.

В данной статье анализируется воздействие запусков космических летательных аппаратов с платформы "Морской старт" на загрязнение вод Мирового океана.

Прогрессивное развитие человеческого общества, коммуникативных, информационных и познавательных его аспектов, стремление к расширению сферы жизнедеятельности, да и просто банальное любопытство, на протяжении многих веков двигающее людьми в их стремлении заглянуть в глубины космоса, обусловливает необходимость всё большего количества запусков космических аппаратов в околоземное и межпланетное пространство. Как известно, наиболее экономичным и целесообразным является запуск космических летательных аппаратов в экваториальной зоне Земли. В связи с ограниченным числом наземных космодромов в этой зоне, казалось бы, удачным решением проблемы стала плавучая платформа "Морской старт", транспортируемая в любую точку Мирового океана и позволяющая производить запуски из различных областей экваториальной зоны океана. Но, при всех несомненных преимуществах "Морского старта", специалисты-экологи столкнулись с проблемой обеспечения экологической безопасности Мирового океана.

Мировой океан играет решающую роль в поддержании постоянного соотношения содержания кислорода и углекислого газа в атмосфере, то есть кислородно-углекислого баланса, который жизненно необходим обитателям нашей планеты. Вырабатывая более половины кислорода на Земле, Мировой океан является "лёгкими" нашей планеты. Океан играет огромную роль в формировании климата Земли, перенося холодные и тёплые массы воды в другие широты и перераспределяя тепло на планете. Океан является средой обитания огромного количества живых организмов, которые по разнообразию видов не уступают сухопутным. Кроме того, океан — важный источник пищевых и минеральных ресурсов, добываемых и используемых человеком.

Воздействие на океан со стороны *человека*, многолетнее интенсивное его использование оказало *губительное влияние* даже на такую огромную экосистему. Глобальные экологические проблемы, с которыми столкнулось человечество в настоящее время, в полной мере затронули и Мировой океан. Загрязнение Мирового океана достигло огромных масштабов, а казавшиеся неисчерпаемыми до недавнего времени биологические ресурсы заметно истощены. Экологические проблемы Мирового океана необходимо решать незамедлительно, иначе человечество будет поставлено перед угрозой возникновения глобальной экологической катастрофы.

В этой связи представляется весьма актуальной проблема снижения рисков возникновения нештатных ситуаций, аварий и катастроф при морском старте космических кораблей и отрицательного воздействия их последствий на морскую флору и фауну и, как следствие, на человека. Печальным подтверждением актуальности и безотлагательности решения данной проблемы явился целый ряд неудачных запусков ракет и космических аппаратов с платформы "Морской старт" (рис 1). Консорциум "Морской старт" создан в 1995 г. В его состав входят американская компания Воеіпд, британско-норвежская компания Куаегпег Group, КБ "Южное" и производственное объединение "Южмаш" (Украина), РКК "Энергия" (Россия).

12 марта 2000 г. с плавучей платформы Odyssey, установленной на экваторе, стартовала ракета "Зенит" со спутником системы сотовой телефонной связи ICO F1. В течение нескольких минут после запуска все шло нормально, однако при запуске двигателей второй ступени ракеты началось отклонение ракеты от заданной траектории, и связь с ней была потеряна. После отклонения от курса ракета, скорее всего, была взорвана автоматической системой самоликвидации. Верхняя ступень ракеты и спутник упали в Тихий океан в 4300 км к юго-востоку от места старта [1].

31 января 2007 г. при старте из акватории Тихого океана с платформы "Морской старт" взорвалась и затонула ракета-носитель "Зенит-3SL" со спутником NSS-8 [2] (рис. 2, 3). Поднявшись над стартовым столом всего на несколько сантиметров, ракета начала просаживаться вниз и проваливаться под стол. В результате соударения о патрубки системы охлаждения стартовой платформы и газоотражателя произошёл взрыв. Платформу охватило пламя, а обломки ракеты затонули в океане.

Рис. 1. Стартовая платформа "Морской старт"

Рис. 2. Морской "фальстарт" 31 января 2007 г.

Рис. 3. Взрыв ракеты "Зенит-3SL" 31 января 2007 г.

1 февраля 2013 г. при запуске ракеты "Зенит-ЗSL" со спутником Intelsat-27 по программе Sea Launch произошла авария, ракета упала в Тихий океан в 2,5 км от стартовой платформы. Причиной стал отказ бортового источника мощности [3].

Согласно статистическим данным, за весь период функционирования платформы "Морской старт" было осуществлено 36 запусков, среди них 32 успешных, 1 частично успешный и 3 аварийных [4], то есть число неудачных запусков на сегодняшний день составляет примерно 10%. Для космической индустрии, являющейся высокорисковой отраслью, возможно, процент невелик, но для экологии Мирового океана он может оказаться губительным, так как ракетное топливо очень ядовито, а локализовать его в океане и затем обезвредить не представляется возможным.

В качестве решения этой проблемы группой специалистов ОАО "ТАНТК им. Г.М. Бериева" была предложена идея так называемого "воздушного старта". Суть идеи состоит в использовании сверхтяжёлого самолёта-амфибии в качестве базовой платформы для запуска разгонного блока с космическим самолётом [5]. Комплексная авиационно-космическая система (АКС) состоит из самолёта подъёма 1 с отделяющимися разгонным блоком (РБ) 2 и находящимся на нём воздушно-космическим самолётом (ВКС) 3 (рис. 4).

Рис. 4. Авиационно-космическая система

Комплексная система включает также инфраструктуру наземного базирования и обеспечения, состоящую из нескольких прибрежных стояночных площадок с гидроспусками для размещения и спуска на воду самолёта-амфибии. В качестве самолёта подъёма использован сверхтяжёлый реактивный самолётамфибия бесконтактного взлёта и посадки, двигатели которого работают на природном газе. Стояночные площадки размещены в автономных пунктах экваториального побережья Мирового океана, не зависящих от погодных условий, вблизи пустынных районов суши.

Все элементы АКС предназначены для многоразового использования и являются возвращаемыми на Землю. На рис. 5 показана схема основных этапов функционирования АКС [5]. Спуск на воду самолёта-амфибии 1 с РБ 2 и ВКС 3 — этап 0; взлёт, подъём на заданную высоту и отделение РБ с ВКС от самолёта подъёма — этапы I, II, III; ускорение разгонного блока 2 с воздушно-космическим самолётом 3 — этапы IV-V; отделение ВКС от РБ и выход на околоземную орбиту — этапы VI-VII; возврат РБ на базовый аэродром — этапы VIII-XIII; посадка самолёта-амфибии на воду и выход по гидроспуску на прибрежную стояночную площадку — этапы XI-XII; торможение ВКС, сход с орбиты, снижение и посадка на базовый аэродром — этапы IX, X-XIV [5].

Рис. 5. Схема основных этапов функционирования АКС

Повышение экологической безопасности для Мирового океана достигается за счёт особенностей компоновки, а также определенной методики запуска авиационно-космической системы. В качестве топлива для подъёмных и маршевых двигателей используется *природный газ* вместо керосина. Самолёт подъёма представляет собой *самолёт-амфибию бесконтактного взлёта* и посадки, обеспечиваемых за счёт использования вертикальной и горизонтальной тяги подъёмных двигателей для создания воздушной подушки под крыломцентропланом, что позволяет отказаться от строительства на суше аэродромов и минимизировать размеры площадок, выделяемых для запуска АКС, а также сократить дистанцию разбега и, таким образом, уменьшить время нахождения самолёта подъёма над морем (для снижения вероятности экологической катастрофы для вод океана, в случае возникновения нештатной ситуации при взлёте). После этапа взлёта самолёт подъёма берет курс в сторону пустынной части суши в экваториальной зоне Земли, над которой и происходит отделение РБ с ВКС от самолёта-носителя и запуск их реактивных космических двигателей.

Авиационно-космическая система как *объект управления* (*OY*) представляет собой многоуровневую многосвязную нелинейную динамическую систему, составные элементы которой — самолёт подъёма, разгонный блок и воздушно-космический самолёт — в свою очередь также являются многоуровневыми нелинейными динамическими системами, управление которыми требует от человека концентрации внимания, восприятия, осмысления и обработки информации, которые приближаются к его физиологическому порогу, превышение которого может привести к возникновению аварийной ситуации. Автоматизация процессов управления позволит уменьшить нагрузку на пилотов, повысить надежность системы управления, снизить риск возникновения нештатных ситуаций и, тем самым, *повысить экологическую безопасность* авиационно-космической системы для Мирового океана.

Методы синтеза законов управления, основанные на линейной идеологии классической теории управления, не способны учесть в полной мере естественные свойства рассматриваемого динамического объекта, взаимосвязь и взаимозависимость входящих в него подсистем. Следствием чего является необходимость применения нового синергетического подхода к синтезу законов управления, основанного на принципах направленной самоорганизации в нелинейных динамических системах. Управление, основанное на синергетическом подходе, сводится к тому, что все фазовые траектории замкнутой системы "объект управления – регулятор" устремляются к образовавшимся в пространстве состояний объектов управления искусственным аттракторам или синергиям [6]. Метод аналитического конструирования агрегированных регуляторов (AKAP), разрабатываемый развиваемый профессором И А.А. Колесниковым и возглавляемой им научной школой, является одним из наиболее перспективных методов синергетического синтеза. Этот метод неоднократно применялся для синтеза законов управления нелинейными динамическими объектами управления различной природы и доказал свою эффективную работоспособность [6, 7]. Синтезируем базовый закон управления АКС на первоначальном этапе взлёта I (рис. 5).

Математическая модель АКС

Для синтеза законов управления АКС запишем математическую модель пространственного движения самолёта подъёма [8] в переменных состояния с учётом влияния РБ и ВКС:

$$\dot{x}_{1}(t) = x_{2}x_{6} - x_{3}x_{5} - g \sin x_{10} + (1/m)X^{s} + (1/m)u_{1};
\dot{x}_{2}(t) = x_{3}x_{4} - x_{1}x_{6} - g \cos x_{11} \cos x_{10} + (1/m)Y^{s} + (1/m)u_{2};
\dot{x}_{3}(t) = -x_{2}x_{4} + x_{1}x_{5} - g \sin x_{11} \cos x_{10} + (1/m)Z^{s};
\dot{x}_{4}(t) = \frac{\left(I_{z} - I\right)_{z} x_{5}x_{6} + M_{x}^{s} + u_{3}}{I_{x}};
\dot{x}_{5}(t) = \frac{\left(I_{x} - I\right)_{z} x_{4}x_{6} + M_{y}^{s} + u_{4}}{I_{y}};
\dot{x}_{6}(t) = \frac{\left(I_{y} - I\right)_{z} x_{4}x_{5} + M_{z}^{s} + u_{5}}{I_{z}};
\dot{x}_{7}(t) = x_{1} \cos x_{12} \cos x_{10} + x_{2} \left(\sin x_{11} \sin x_{12} - \cos x_{11} \cos x_{12} \sin x_{10}\right) +
+ x_{3} \left(\cos x_{11} \sin x_{12} + \sin x_{11} \cos x_{12} \sin x_{10}\right);
\dot{x}_{8}(t) = x_{1} \sin x_{10} + x_{2} \cos x_{11} \cos x_{10} - x_{3} \sin x_{11} \cos x_{10};
\dot{x}_{9}(t) = -x_{1} \sin x_{12} \cos x_{10} + x_{2} \left(\sin x_{11} \cos x_{12} + \cos x_{11} \sin x_{12} \sin x_{10}\right) +
+ x_{3} \left(\cos x_{11} \cos x_{12} - \sin x_{11} \sin x_{12} \sin x_{10}\right);
\dot{x}_{10}(t) = x_{5} \sin x_{11} + x_{6} \cos x_{11};
\dot{x}_{11}(t) = x_{4} - tg x_{10} \left(x_{5} \cos x_{11} - x_{6} \sin x_{11}\right);
\dot{x}_{12}(t) = x_{5} \frac{\cos x_{11}}{\cos x_{10}} - x_{6} \frac{\sin x_{11}}{\cos x_{10}},$$

где $x_1 = V_x$, $x_2 = V_y$, $x_3 = V_z$, $x_4 = \omega_x$, $x_5 = \omega_y$, $x_6 = \omega_z$ — проекции векторов линейной и угловой скорости на оси связанной системы координат (ССК);

 $x_7 = x$, $x_8 = y$, $x_9 = z$ — координаты центра масс (ЦМ) самолёта подъёма в земной системе координат (ЗСК);

 $x_{10} = \mathcal{G}$, $x_{11} = \gamma$, $x_{12} = \psi$ — углы тангажа, крена и рыскания, соответственно;

 I_x , I_y , I_z — моменты инерции самолёта;

g – ускорение свободного падения;

m – масса аппарата;

 $u_1 = \sum_{j=1}^k P_{xj}$, $u_2 = \sum_{j=1}^k P_{yj}$ — проекции суммарной силы тяги подъёмных и марше-

вых двигателей на оси ССК;

j – номер двигателя;

 $u_3 = \sum_{j=1}^k M_{_{XPj}}$, $u_4 = \sum_{j=1}^k M_{_{YPj}}$, $u_5 = \sum_{j=1}^k M_{_{ZPj}}$ — моменты от тяги двигателей относи-

тельно осей ССК.

$$X^{s} = X + \Delta X_{RB+BKC} + \sum_{i=1}^{n} N_{xi};$$

$$Y^{s} = Y + \Delta Y_{RB+BKC} + \sum_{i=1}^{n} N_{yi};$$

$$Z^{s} = Z + \Delta Z_{RB+BKC} + \sum_{i=1}^{n} N_{zi},$$

$$(2)$$

где X, Y, Z — сила лобового сопротивления, нормальная аэродинамическая и боковая сила самолёта подъёма:

 ΔX_{RB+BKC} , ΔY_{RB+BKC} , ΔZ_{RB+BKC} – приращения силы сопротивления, нормальной аэродинамической и боковой силы от РБ и ВКС;

 $\sum_{i=1}^{n} N_{xi}, \sum_{i=1}^{n} N_{yi}, \sum_{i=1}^{n} N_{zi}$ — проекции сил в опорах механизма крепления РБ к самолёту подъёма на оси ССК;

i — порядковый номер опоры;

 ΔM_{xRB} , ΔM_{yRB} , ΔM_{yBKC} , ΔM_{zRB} , ΔM_{zBKC} — моменты аэродинамических сил от РБ и ВКС относительно осей ССК с началом в ЦМ самолёта подъёма;

$$\textstyle\sum_{i=1}^{n} M_{xNi}, \sum_{i=1}^{n} M_{yNi}, \sum_{i=1}^{n} M_{zNi} - \text{моменты сил } \sum_{i=1}^{n} N_{xi}, \sum_{i=1}^{n} N_{yi}, \sum_{i=1}^{n} N_{zi} \text{ относительно осей ССК.}$$

Синтез базовых законов управления

На начальном этапе взлёта АКС работают подъёмные и маршевые двигатели, создающие под крылом-центропланом динамическую воздушную подушку [5]. Рассмотрим этап взлёта самолёта подъёма, на котором самолёт уже приподнялся над стартовой площадкой. На этом этапе необходимо стабилизировать самолёт и сориентировать его по курсу для дальнейшего поступательного движения. При этом скорость движения самолёта ещё недостаточна для эффективной работы аэродинамических органов управления (руля высоты, руля направления, элеронов и т.д.), и управление самолётом осуществляется изменением тяги подъёмных и маршевых двигателей.

Применим метод аналитического конструирования агрегированных регуляторов (АКАР) [6] к проблеме проектирования стратегий управления авиационно-космической системой. В модели (1): x_1 - x_{12} — переменные состояния системы; u_1 - u_5 — управления. Рассмотрим задачу стабилизации самолёта подъёма при нулевых составляющих линейной скорости, нулевом угле тангажа и заданном угле курса.

Постановка задачи. Требуется найти в аналитической форме закон векторного управления u(t) как функцию координат состояния x системы (1), обеспечивающий выполнение заданных технологических инвариантов или целей управления: $V_x = V_x^* = 0$, $V_y = V_y^* = 0$, $V_z = V_z^* = 0$, $y = y^* = 0$, $y = y^*$.

Синтезируем законы управления зависанием самолёта подъёма над стартовой площадкой с нулевыми значениями проекций линейной скорости и ориентацией относительного исходного положения под углом курса ψ^* .

В соответствии с процедурой метода АКАР [6], для синтеза законов управления системой (1) вводится параллельная совокупность инвариантных многообразий по числу каналов управления:

$$\Psi_1 = x_1 - x_1^*; \quad \Psi_2 = x_2 - x_2^*; \quad \Psi_3 = x_4 - \phi_1; \quad \Psi_4 = x_5 - \phi_2; \quad \Psi_5 = x_6 - \phi_3.$$
 (3)

Инвариантные многообразия (3) должны удовлетворять системе функциональных уравнений

$$T_m \dot{\Psi}_m(t) + \Psi_m(t) = 0, \ m = 1, 2, ..., 5,$$
 (4)

где T_m — постоянные времени, влияющие на качество динамики процессов в замкнутой системе "объект — регулятор";

 ϕ_l , l=1, 2, 3 –"внутренние" управления или некоторые функции связи, которые будут получены на последующих этапах процедуры синтеза;

 $T_{\scriptscriptstyle m} > 0$ — условие асимптотической устойчивости в целом уравнений (4) относительно многообразий $\psi_{\scriptscriptstyle m} = 0$.

Положив в (4) $\psi_m = 0$, m = 1, 2, ..., 5, на пересечении инвариантных многообразий получим систему алгебраических уравнений

$$x_1 = 0;$$
 $x_2 = 0;$ $x_4 - \phi_1 = 0;$ $x_5 - \phi_2 = 0;$ $x_6 - \phi_3 = 0.$ (5)

Выразим из системы уравнений (5) "внутренние" управления ϕ_l и подставим их в уравнения объекта (1), в правых частях которых отсутствуют управления u_m . В результате на пересечении инвариантных многообразий $\psi_m = 0$ наблюдается эффект динамического "сжатия фазового пространства" [6]. Размерность движения изображающей точки системы (1) понизится, уравнения декомпозированной системы примут вид:

$$\dot{x}_{3}(t) = -g \sin x_{11} \cos x_{10} + (1/\eta_{1} Z^{s};
\dot{x}_{7}(t) = x_{3} (\cos x_{11} \sin x_{12} + \sin x_{11} \cos x_{12} \sin x_{10});
\dot{x}_{8}(t) = -x_{3} \sin x_{11} \cos x_{10};
\dot{x}_{9}(t) = x_{3} (\cos x_{11} \cos x_{12} - \sin x_{11} \sin x_{12} \sin x_{10});
\dot{x}_{10}(t) = \phi_{2} \sin x_{11} + \phi_{3} \cos x_{11};
\dot{x}_{11}(t) = \phi_{1} - tg x_{10} (\phi_{2} \cos x_{11} - \phi_{3} \sin x_{11});
\dot{x}_{12}(t) = \phi_{2} \frac{\cos x_{11}}{\cos x_{10}} - \phi_{3} \frac{\sin x_{11}}{\cos x_{10}}.$$
(6)

Для декомпозированной системы (6) введём вторую совокупность макропеременных:

$$\psi_6 = x_{10} - x_{10}^*; \quad \psi_7 = g \sin x_{11} \cos x_{10} + (1/\eta_1 Z^s + x_3 + x_3^*) \quad \psi_8 = x_{12} - x_{12}^*$$
 (7)

Совокупность введенных макропеременных (7) должна удовлетворять решению системы функциональных уравнений

$$T_h \dot{\Psi}_h(t) + \Psi_h(t) = 0, \ h = 6, \ 7, 8,$$
 (8)

где T_h — постоянные времени, влияющие на качество динамики процессов в замкнутой системе.

Совместное аналитическое решение уравнений (6), (7), (8) позволяет найти выражения для "внутренних" управлений ϕ_l , в виде функций переменных состояния $x_3, x_{10}, x_{11}, x_{12}$, постоянных времени T_h и технологического инварианта x_{12}^* .

Решив систему функциональных уравнений

$$T_6\dot{\psi}_6 + \psi_6 = 0; \quad T_7\dot{\psi}_7 + \psi_7 = 0; \quad T_8\dot{\psi}_8 + \psi_8 = 0,$$
 (9)

получим выражения для "внутренних" управлений

$$\phi_{1} = -(T_{6}T_{7}g\cos(x_{11})\cos(x_{10})^{2}tg(x_{10})(x_{12} - x_{12}^{*}) + T_{6}T_{8}x_{3} + (1 + T_{7})T_{6}T_{8}g\sin(x_{11})\cos(x_{10}) + + T_{7}T_{8}g\sin(x_{10})\sin(x_{11})) / (T_{6}T_{7}T_{8}g(\cos(x_{11})\cos(x_{10}));$$

$$\phi_{2} = \phi_{3}\operatorname{ctg}(x_{11}) + \frac{1}{T_{6}\sin(x_{11})}x_{10};$$

$$\phi_{3} = \frac{-T_{8}\cos(x_{11})x_{10} - T_{6}\sin(x_{11})\cos(x_{10})(x_{12} - x_{12}^{*})}{T_{6}T_{8}(\cos(x_{11})^{2} + \sin(x_{11})^{2})}.$$
(10)

Из совместного решения системы функциональных уравнений метода АКАР (4), с учётом полученных выражений для ϕ_l (10), уравнений модели объекта управления (1) и макропеременных (3), получим искомые внешние управления как функции, зависящие от переменных состояния системы. Ввиду громоздкости полученных законов управления приведем выражения для управлений в общем виде:

$$u_{1} = x_{3}x_{5} - x_{2}x_{6} + mg \cdot \sin(x_{10}) - mx_{1} / T_{1};$$

$$u_{2} = x_{1}x_{6} - x_{3}x_{4} + mg \cdot \cos(x_{11})\cos(x_{10}) - mx_{2} / T;$$

$$u_{3} = f(x_{1} \div x_{6}, x_{10}, x_{11}, x_{12});$$

$$u_{4} = f(x_{4}, x_{5}, x_{6}, x_{10}, x_{11}, x_{12});$$

$$u_{5} = f(x_{4}, x_{5}, x_{6}, x_{10}, x_{11}, x_{12}).$$

$$(11)$$

Моделирование

Подставив полученные выражения для законов управления (11) в модель объекта (1), получим замкнутую систему "объект управления — регулятор". Установив постоянные параметры регулятора и задав технологические инварианты, получим систему для моделирования процесса управления зависанием самолёта подъёма над стартовой площадкой с нулевыми значениями проекций линейной скорости и ориентацией относительного исходного положения с заданным углом курса. Результаты численного моделирования, с учётом параметров конкретного объекта управления, представлены на рис. 6-11.

Рис. 6. Составляющие линейной скорости от времени, M/C

Рис. 7. Составляющие угловой скорости от времени, $\rho a \partial c$

Рис. 8. Координаты центра масс от времени, *м*

Рис. 9. Зависимость углов тангажа, крена и рыскания от времени, *град*.

Рис. 10. Управления $u_1, u_2, \kappa \epsilon$

Рис. 11. Управления u_3 , u_4 , u_5 , $\kappa 2 \cdot M$

Результаты моделирования показывают, что найденные законы управления обеспечивают асимптотическую устойчивость замкнутой нелинейной системы и реализуют поставленные цели управления.

Заключение

Применение авиационно-космической системы на базе сверхтяжёлого самолёта-амфибии бесконтактного взлёта с двигателями, работающими на природном газе; отделение разгонного блока с воздушно-космическим самолётом от самолёта-носителя на большой высоте над пустынным районом суши; автоматизация процесса управления начальным этапом взлёта АКС, позволяющая существенно снизить нагрузку на экипаж и повысить безопасность полёта, способствуют повышению экологической безопасности Мирового океана.

Литература

- 1. *Очередной* запуск по программе "морской старт" закончился неудачей // InfoArt News Agency. http://sea-launch.narod.ru.
 - 2. **Черноиванова А.** Морской фальстар // Взлёт. № 3. 2007.
- 3. *Сафронов И*. ГЛОНАСС пополнилась аварией // Новости Военно-промышленного комплекса (ВПК). http://vpk.name/news.
 - 4. *Морской* старт. http://ru.wikipedia.org.
- 5. *Кобзев В. А., Форминов Л.Г., Гломбинский Е. Н.* Комплексная система для запуска тяжелых воздушно-космических самолётов многоразового использования на околоземную орбиту, супертяжёлый реактивный самолёт-амфибия для неё (варианты) и способ осуществления запуска // Патент РФ № 2397922, приоритет от 30.07.2008 г.
- 6. *Колесников А.А.* Синергетическая теория управления. М.: Энергоатомиздат, 1994. 344 с.
- 7. **Веселов Г.Е.** Прикладная теория синергетического синтеза иерархических систем управления // Известия ТРТУ. Тематический выпуск. Прикладная синергетика и системный синтез. 2006. №5. С. 67-78.
- 8. *Бюшгенс Г.С., Студнев Р.В.* Динамика самолёта: Пространственное движение. М.: Машиностроение, 1983.